Share This Article:

EDESR and ODMR of Impurity Centers in Nanostructures Inserted in Silicon Microcavities

Full-Text HTML Download Download as PDF (Size:4087KB) PP. 544-558
DOI: 10.4236/jmp.2011.26064    3,517 Downloads   6,916 Views  

ABSTRACT

We present the first findings of the new electrically- and optically-detected magnetic resonance technique [ED electron spin resonance (EDESR) and (ODMR)] which reveal single point defects in the ultra-narrow silicon quantum wells (Si-QW) confined by the superconductor δ-barriers. This technique allows the ESR identification without the application of the external cavity as well as a high frequency source and recorder, with measuring the only magnetoresistance (EDESR) and transmission (ODMR) spectra within frameworks of the excitonic normal-mode coupling (NMC) caused by the microcavities embedded in the Si-QW plane. The new resonant positive magnetoresistance data are interpreted here in terms of the interference transition in the diffusive transport of free holes respectively between the weak antilocalization regime in the region far from the ESR of a paramagnetic point defect located inside or near the conductive channel and the weak localization regime in the nearest region of the ESR of that defect.

Cite this paper

N. Bagraev, V. Mashkov, E. Danilovsky, W. Gehlhoff, D. Gets, L. Klyachkin, A. Kudryavtsev, R. Kuzmin, A. Malyarenko and V. Romanov, "EDESR and ODMR of Impurity Centers in Nanostructures Inserted in Silicon Microcavities," Journal of Modern Physics, Vol. 2 No. 6, 2011, pp. 544-558. doi: 10.4236/jmp.2011.26064.

References

[1] N.T. Bagraev, W. Gehlhoff, L.E. Klyachkin, A.M. Malyarenko, V.A. Mashkov, V.V. Romanov, T.N. She-lykh, “ODMR of impurity centers embedded in silicon microcavities”, Physica E, Vol. 40, 2008, pp. 1627- 1629.
[2] N.T. Bagraev, W. Gehlhoff, L.E. Klyachkin, A.A. Kudryavtsev, A.M. Malyarenko, G.A. Oganesyan, D.S. Poloskin, V.V. Romanov, “Spin-dependent transport of holes in silicon quantum wells confined by superconduc-tor barriers”, Physica C, Vol. 468, 2008, pp. 840-843.
[3] N.T. Bagraev, N.G. Galkin, W. Gehlhoff, L.E. Klyachkin, A.M. Malyarenko, “Phase and amplitude response of the ‘0.7 feature’ caused by holes in silicon one-dimensional wires and rings”, J. Phys.: Condens. Matter, Vol. 20, 2008, pp. 164202-1-10.
[4] N.T. Bagraev, A.D. Bouravleuv, W. Gehlhoff, L.E. Kly-achkin, A.M. Malyarenko, V.V. Romanov, “Elec- tron-dipole resonance of impurity centres embedded in silicon microcavities”, Physica B, Vol. 340-342, 2003, pp. 1078-1081.
[5] N.T. Bagraev, A.D. Bouravleuv, W. Gehlhoff, L.E. Kly-achkin, A.M. Malyarenko, V.V. Romanov, “Elec- tron-dipole resonance of impurity centres embedded in silicon microcavities”, phys. stat. sol. (c), Vol. 2, No 2, 2005, pp. 783-786.
[6] J.P. Kotthaus, R. Ranvaud, “Cyclotron resonance of holes in surface space charge layers on Si”, Phys. Rev. B, Vol. 15, No 12, 1977, pp. 5758-5761.
[7] N.T. Bagraev, W. Gehlhoff, L.E. Klyachkin, “Cyclotron Resonance in Heavily Doped Silicon Quantum Wells”, Solid St. Phenomena, Vol. 47-48, 1995, pp. 589-594.
[8] Bao-xing Li, Pen-lin Cao, Duam-lin Que, “Distorted ico-sahedral cage structure of Si60 clusters”, Phys. Rev. B, vol. 61, no. 3, 2000, pp. 1685-1687.
[9] N.T. BagraeV, A.D. Bouravleuv, L.E. Klyachkin, A.M. Malyarenko, W. Gehlhoff, Yu.I. Romanov, S.A. Rykov, “Local tunneling spectroscopy of silicon nanostructures”, Semiconductors, Vol. 39, no. 6, June 2005, pp.716-728.
[10] N.T. Bagraev, A.D. Bouravleuv, L.E. Klyachkin, A.M. Malyarenko, W. Gehlhoff, V.K. Ivanov, I.A. Shelykh, “Quantized conductance in silicon quantum wires”, Semiconductors, Vol. 36, No. 4, April 2002, pp. 439-460.
[11] A. Slaoui, E. Fogarassy, J.C. Muller, P. Siffert, “Study of some optical and electrical properties of heavily doped silicon layers”, J. de Physique Colloq., Vol. 44, No C5 44, 1983, pp. 65-71.
[12] N.T. Bagraev, A.D. Bouravleuv, L.E. Klyachkin, A.M. Malyarenko, S.A. Rykov, “Self-Ordered Microcavities Embedded in Ultra-shallow Silicon p-n Junctions”, Semiconductors, Vol. 34, No 6, 2000, pp. 700-711.
[13] R. Laiho, M.M. Afanasjev, M.P. Vlasenko, L.S. Vlasenko, “Electron Exchange Interaction in S = 1 Defects Observed by Level Crossing Spin Dependent Microwave Photo-conductivity in Irradiated Silicon”, Phys. Rev. Lett., Vol. 80, No 7, 1998, pp. 1489-1492.
[14] N.T. Bagraev, N.G. Galkin, W. Gehlhoff, L.E. Klyachkin, A.M. Malyarenko, I.A. Shelykh, “Spin interference in silicon one-dimensional rings”, J. Phys.: Condens. Matter, v.18, 2006, pp. L567-L573.
[15] N.T. Bagraev, N.G. Galkin, W. Gehlhoff, L.E. Klyachkin, A.M. Malyarenko, I.A. Shelykh, “Spin interference in silicon one-dimensional rings”, Physica E, Vol. 40, 2008, pp. 1338-1340.
[16] N.T. Bagraev, A.D. Bouravleuv, W. Gehlhoff, L.E. Kly-achkin, A.M. Malyarenko, V.V. Romanov, “Er-bium-related centres embedded in silicon microcavities”, Physica B, Vol. 340-342, 2003, pp. 1074-1077.
[17] A. Alexandrov, J. Ranninger, “Bipolaronic superconduc-tivity”, Phys. Rev. B 24, No 3, 1981, pp. 1164-1169.
[18] A.S. Alexandrov, N.F. Mott, “Bipolarons”, Rep. Prog. Phys., Vol. 57, No 12, December 1994, pp. 1197-1288.
[19] V.L. Ginzburg, “On surface superconductivity”, Phys. Lett., Vol. 13, 1964, pp. 101-104.
[20] A.I. Larkin, Yu.N. Ovchinnikov, “Nonuniform state of superconductors”, Sov. Phys. JETP, Vol. 20, No. 3, March 1965, pp. 762-770.
[21] P. Fulde, R.A. Ferrell, “Superconductivity in a Strong Spin-Exchange Field”, Phys. Rev., Vol. 135, No 3A, 1964, pp. A550-A563.
[22] W.A. Little, “Higher temperatures: theoretical models”, Physica, Vol. 55, 1971, pp. 50-54.
[23] N.T. Bagraev, V.A. Mashkov, “Tunneling Negative-U centers and photo-induced reactions in Solids”, Solid State Communications, Vol. 51, No 7, 1984, pp. 515-521.
[24] N.T. Bagraev, V.A. Mashkov, “A mechanism for two-electron capture at deep level defects in semiconduc-tors, Solid State Communications”, Solid State Commu-nications, Vol. 65, No12, 1988, pp. 1111-1117.
[25] M. Tinkham, “Introduction to Superconductivity”, Dover, New York, 1996.
[26] I.A. Shelykh, M.A. Kulov, N.G. Galkin, N.T. Bagraev, “Spin-dependent transport caused by the local magnetic moments inserted in the Aharonov–Bohm rings”, J. Phys.: Condens. Matter, Vol. 19, 2007, pp. 246207-1-14.
[27] M. Rosenau Da Costa, I.A. Shelykh, N.T. Bagraev, “Frac-tional quantization of ballistic conductance in one-dimensional hole systems”, Phys. Rev. B, Vol. 76, No. 20, 2007, pp. 201302R-1-4.
[28] H.H.P.Th. Bekman, T. Gregorkiewicz, C.A.J. Ammerlaan, “Si-NL10: Paramagnetic Acceptor State of the Silicon Thermal Donor”, Phys. Rev. Lett., Vol. 61, No. 2, 1988, pp. 227-230.
[29] W. Gehlhoff, K. Irmscher, N.T. Bagraev, L.E. Klyachkin, A.M. Malyarenko, “Shallow Centers in Heavily Doped Silicon Quantum Wells”, In: C.A.J. Ammerlaan, B. Pajot, Ed., Shallow Level Centres in Semiconductors, World Scientific, Singapore, 1997, pp. 227-232.
[30] B.N. Mukashev, Kh.A. Abdullin, Yu.V. Gorelkinskii, “Metastable and bistable defects in silicon”, Phys-ics-Uspekhi, Vol. 43, No. 2, February 2000, pp. 139–150.
[31] C.A.J. Ammerlaan, P.T. Huy, “Characterisation of Hy-drogen and Hydrogen-Related Centres in Crystalline Silicon by Magnetic-Resonance Spectroscopy”, Solid State Phenom. Vol. 85-86, 2002, pp. 353-370.
[32] J.D. Carey, R.C. Barklie, and J.F. Donegan, “Electron paramagnetic resonance and photoluminescence study of Er-impurity complexes in Si”, Phys. Rev. B, Vol. 59, No. 4, 1999, pp. 2773-2782.
[33] R. Kubo, K. Tomita, “A General Theory of Magnetic Resonance Absorption”, J. Phys. Soc. Jpn., Vol. 9, No. 6, November-December 1954, pp. 888-919.
[34] R. Kubo, “Note on the Stochastic Theory of Resonance Absorption”, J. Phys. Soc. Jpn., Vol. 9, No. 6, November- December 1954, pp. 935-944.
[35] E.C. Lightowlers, A.N. Safonov, “Photoluminescence vibrational spectroscopy of defects containing the light impurities carbon and oxygen in silicon”, Mat. Sci. Forum, Vol. 258-263, 1997, pp. 617-622.
[36] S. Ghatnekar-Nilsson, M. Kleverman, P. Emanuelsson, H.G. Grimmeiss, “Identification of the iron-boron line spectrum in silicon”, Semicond. Sci. Technol, Vol. 8, No. 10, October 1993, pp. 1857-1861.
[37] C. Weisbuch, M. Nishioka, A. Ishikawa, Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity”, Phys. Rev. Lett., Vol. 69, No. 23, 1992, pp. 3314-3317.
[38] G. Khitrova, H.M. Gibbs, F. Jahnke, M. Kira, S.W. Koch, “Nonlinear optics of normal-mode-coupling semiconduc-tor microcavities”, Rew. Modern. Phys., Vol. 71, No. 5, 1999, pp. 1591-1639.
[39] A. Mainwood, “The trapping of hydrogen at carbon de-fects in silicon”, Mat. Sci. Forum, Vol. 258-263, 1997, pp. 253-258.
[40] A.N. Safonov, E.C. Lightowlers, “The M-line (760.8 meV) luminescence system associated with the car-bon-hydrogen acceptor centre in silicon”, Mat. Sci. Forum, Vol. 258-263, 1997, pp. 259-264.

  
comments powered by Disqus

Copyright © 2017 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.