Changes in cerebral perfusion detected by dynamic susceptibility contrast magnetic resonance imaging: normal volunteers examined during normal breathing and hyperventilation

Abstract

Global cerebral perfusion parameters were measured using dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) in eight healthy volunteers examined during normal breathing and spontaneous hyperventilation. DSC-MRI-based cerebral blood flow (CBF) de-creased during hyperventilation in all volun-teers (average decrease 29%), and the corre-sponding global CBF estimates were 73±19ml/ (min100g) during normal breathing and 52± 7.9ml/(min100g) during hyperventilation (mean ±SD, n=8). Furthermore, the hypocapnic condi-tions induced by hyperventilation resulted in a prolongation of the global mean transit time (MTT) by on average 14%. The observed CBF estimates appeared to be systematically over-estimated, in accordance with previously pub-lished DSC-MRI results, but reduced to more reasonable levels when a previously retrieved calibration factor was applied.

Share and Cite:

Wirestam, R. , Engvall, C. , Ryding, E. , Holtas, S. , Stahlberg, F. and Reinstrup, P. (2009) Changes in cerebral perfusion detected by dynamic susceptibility contrast magnetic resonance imaging: normal volunteers examined during normal breathing and hyperventilation. Journal of Biomedical Science and Engineering, 2, 210-215. doi: 10.4236/jbise.2009.24034.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] K. A. Rempp, G. Brix, F. Wenz, C. R. Becker , F. Gückel, and W. J. Lorenz, (1994) Quantification of regional cerebral blood flow and volume with dynamic suscepti- bility contrast-enhanced MR imaging, Radiology, 193, 637-641.
[2] L. ?stergaard, R. M. Weisskoff, D. A. Chesler, C. Gyldensted, and B. R. Rosen, (1996) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages, Part I: Mathematical Approach and Statistical Analysis, Magnetic Resonance in Medicine, 36, 715-725.
[3] R. Ellinger, C. Kremser, M. F. Schocke, C. Kolbitsch, J. Griebel, S. R. Felber, and F. T.Aichner, (2000) The impact of peak saturation of the arterial input function on quantitative evaluation of dynamic susceptibility con- trast-enhanced MR studies, Journal of Computer Assisted Tomography, 24, 942-948.
[4] M. Rausch, K. Scheffler, M. Rudin, and E. W. Radu, (2000) Analysis of input functions from different arterial branches with gamma variate functions and cluster analysis for quantitative blood volume measurements, Magnetic Resonance Imaging, 18, 1235-1243.
[5] J. J. Chen, M. R. Smith, and R. Frayne, (2005) The impact of partial-volume effects in dynamic suscepti- bility contrast magnetic resonance perfusion imaging, Journal of Magnetic Resonance Imaging, 22, 390-399.
[6] B. F. Kj?lby, L. ?stergaard, and V. G. Kiselev, (2006) Theoretical model of intravascular paramagnetic tracers effect on tissue relaxation, Magnetic Resonance in Medicine, 56, 187-197.
[7] C. B. Grandin, A. Bol, A. M. Smith, C. Michel, and G. Cosnard, (2005) Absolute CBF and CBV measurements by MRI bolus tracking before and after acetazolamide challenge: Repeatability and comparison with PET in humans, NeuroImage, 26, 525-535.
[8] K. E. Sakaie, W. Shin, K. R. Curtin, R. M. McCarthy, T. A. Cashen, T. J. and Carroll, (2005) Method for improving the accuracy of quantitative cerebral perfusion imaging, Journal of Magnetic Resonance Imaging, 21, 512-519.
[9] L. Knutsson, S. B?rjesson, E. M. Larsson, J. Risberg, L. Gustafson, U. Passant, F. St?hlberg, and R. Wirestam, (2007) Absolute quantification of cerebral blood flow in normal volunteers: Correlation between Xe-133 SPECT and dynamic susceptibility contrast MRI, Journal of Magnetic Resonance Imaging, 26, 913-920.
[10] P. Meier and K. L. Zierler, (1954) On the theory of indicator-dilution method for measurement of blood flow and volume, Journal of Applied Physiology, 6, 731-744.
[11] K. L. Zierler, (1965) Equations for measuring blood flow by external monitoring of radioisotopes, Circulation Research, 16, 309-321.
[12] T. Ernst, L. Chang, L. Itti, and O. Speck, (1999) Correlation of regional cerebral blood flow from perfusion MRI and SPECT in normal subjects, Magnetic Resonance Imaging, 17, 349–354.
[13] J. B. Fortune, P. J. Feustel, C. deLuna, L. Graca, J. Hasselbarth, and A. M. Kupinski, (1995) Cerebral blood flow and blood volume in response to O2 and CO2 changes in normal humans, Journal of Trauma, 39, 463-472.
[14] H. Ito, I. Kanno, M. Ibaraki, J. Hatazawa, and S. Miura, (2003) Changes in human cerebral blood flow and cerebral blood volume during hypercapnia and hypocapnia measured by positron emission tomography, Journal of Cerebral Blood Flow and Metabolism, 23, 665-670.
[15] P. Reinstrup, E. Ryding, L. Algotsson, L. Berntman, and T. Uski, (1994) Effects of nitrous oxide on human regional cerebral blood flow and isolated pial arteries, Anesthesiology, 81, 396–402.
[16] W. D. Obrist, T. W. Langfitt, J. L. Jaggi, J. Cruz, and T. A. Gennarelli, (1984) Cerebral blood flow and meta- bolism in comatose patients with acute head injury. Relationship to intracranial hypertension, Journal of Neurosurgery, 61, 241-253.
[17] H. Ito, M. Ibaraki, I. Kanno, H. Fukuda, and S. Miura, (2005) Changes in the arterial fraction of human cerebral blood volume during hypercapnia and hypocapnia measured by positron emission tomography, Journal of Cerebral Blood Flow and Metabolism, 25, 852-857.
[18] E. J. W. Bleeker, M. A. van Buchem, and M. J. P. van Osch, (2009) Optimal location for arterial input function measurements near the middle cerebral artery in first-pass perfusion MRI, Journal of Cerebral Blood Flow and Metabolism, 29, 840-852.
[19] C. Engvall, E. Ryding, R. Wirestam, S. Holt?s, K. Ljunggren, T. Ohlsson, and P. Reinstrup, (2008) Human cerebral blood volume (CBV) measured by dynamic susceptibility contrast MRI and 99mTc-RBC SPECT, Journal of Neurosurgical Anesthesiology, 20, 41–44.
[20] K. Kaneko, Y. Kuwabara, F. Mihara, T. Yoshiura, M. Nakagawa, A. Tanaka, M. Sasaki, H. Koga, K. Hayashi, and H. Honda, (2004) Validation of the CBF, CBV, and MTT values by perfusion MRI in chronic occlusive cerebrovascular disease: A comparison with 15O-PET, Academic Radiology, 11, 489-497.
[21] K. L. Leenders, D. Perani, A. A. Lammertsma, J. D. Heather, P. Buckingham, M. J. Healy, J. M. Gibbs, R. J. Wise, J. Hatazawa, S. Herold, R. P. Beaney, D. J. Brooks, T. Spinks, C. Rhodes, R. S. Frackowiak, and T. Jones, (1990) Cerebral blood flow, blood volume and oxygen utilization: Normal values and effect of age, Brain, 113, 27-47.
[22] P. D?rfler, I. Puls, M. Schliesser, M. M?urer, and G. Becker, (2000) Measurement of cerebral blood flow volume by extracranial sonography, Journal of Cerebral Blood Flow and Metabolism, 20, 269-271.
[23] N. A. Lassen, (1985) Normal average value of CBF in young adults is 50ml100 g-1 min-1, Journal of Cerebral Blood Flow and Metabolism [Editorial], 5, 347-349.
[24] D. O. Slosman, C. Chicherio, C. Ludwig, L. Genton, S. de Ribaupierre, D. Hans, C. Pichard, E. Mayer, J. M. Annoni, and A. de Ribaupierre, (2001) 133Xe SPECT cerebral blood flow study in a healthy population: Determination of T-scores, Journal of Nuclear Medicine, 42, 864-870.
[25] E. Matthew, P. Andreason, R. E. Carson, P. Herscovitch, K. Pettigrew, R. Cohen, C. King, C. E. Johanson, and S. M. Paul, (1993) Reproducibility of resting cerebral blood flow measurements with H215O positron emission tomography in humans, Journal of Cerebral Blood Flow and Metabolism, 13, 748-754.
[26] H. Yonas, J. M. Darby, E. C. Marks, S. R. Durham, and C. Maxwell, (1991) CBF measured by Xe-CT: Approach to analysis and normal values, Journal of Cerebral Blood Flow and Metabolism, 11, 716-725.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.