Molecular Mapping of QTLs for Drought Related Traits at Seedling Stage under PEG Induced Stress Conditions in Rice

Abstract

Differential response of seedling characteristics under water stress conditions is known to be associated with drought resistance in rice and elucidation of its genetics could be of help in breeding for tolerance to the stress. A recombinant inbred population derived from the cross between a semi-dwarf variety IR64 and landrace INRC10192 was grown in hydroponic culture and phenotyped for varied responses of seedlings to water deficit imposed by poly ethylene glycol (PEG). The ratio between mean value of seedling trait under stress and control conditions was used for assessing drought tolerance. In all 19 putative QTL relating to five seedling traits viz., shoot length, maximum root length, shoot dry weight, root dry weight and root to shoot dry weight ratio under PEG induced stress conditions were identified confirms that the traditional tall landraces as the one chosen for the study posses hitherto unexploited drought tolerant genes and utilization of them as potential donors in breeding for yield enhancement would be rewarding. They might be useful for improving drought resistance of rice by marker assisted selection/breeding.

Share and Cite:

A. Srividya, L. Vemireddy, P. Ramanarao, S. Sridhar, M. Jayaprada, G. Anuradha, B. Srilakshmi, H. Reddy, A. Hariprasad and E. Siddiq, "Molecular Mapping of QTLs for Drought Related Traits at Seedling Stage under PEG Induced Stress Conditions in Rice," American Journal of Plant Sciences, Vol. 2 No. 2, 2011, pp. 190-201. doi: 10.4236/ajps.2011.22021.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. Fukai and M. Cooper, “Development of drought-resistant cultivars using physio-morphological traits in rice”, Field Crops Research, Vol. 40, 1995, pp. 67-87.
[2] H. T. Nguyen, R. C. Babu, and A. Blum, “Breeding for drought resistance in rice: physiology and molecular genetics considerations”, Crop Science, Vol. 37, 1997, pp. 1426-1434.
[3] [A. H. Price, A. D. Tomos, and D. S. Virk, “Genetic dissection of root growth in rice (Oryza sativa L.)” I: a hydroponic screen”, Theoretical and Applied Genetics, Vol. 95, 1997, pp. 132-142.
[4] H. R. Lafitte, A. H. Price and B. Courtois, “Yield response to water deficit in an upland rice mapping population: Associations among traits and genetic markers”, Theoretical and Applied Genetics, Vol. 109, 2004, pp. 1237-1246.
[5] J. C. O’Toole, “Adaptation of rice to drought-prone environments”, In: IRRI (ed) “Drought Resistance in Crops with the Emphasis on Rice”. International Rice Research Institute, Manila, 1982, pp 195-213.
[6] A. H. Price and A. D. Tomos, “Genetic dissection of root growth in rice (Oryza sativa L.). II: mapping quantitative trait loci using molecular markers”, Theoretical and Applied Genetics, Vol. 95, 1997, pp. 143-152.
[7] A. H. Price, K. A. Steele, B. J. Moore and R. G. W. Jones, “Upland rice grown in soil-filled chambers and exposed to contrasting water-deficit regimes II Mapping quantitative trait loci for root morphology and distribution”, Field Crops Research, Vol. 76, 2002, pp.25-43.
[8] Y. Kato, S. Hirotsu, K. Nemoto and J. Yamagishi, “Identification of QTLs controlling rice drought tolerance at seedling stage in hydroponic culture” Euphytica, Vol. 160, 2008, pp. 423-430.
[9] M. C. Champoux, G. Wang, S. Sarkarung, D. J. Mackill, J. C. O’Toole, N. Huang and S. R. McCouch, “Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers”, Theoretical and Applied Genetics, Vol. 90, 1995, pp. 969-981.
[10] R. Yadav, B. Courtois, N. Huang, G. McLaren, “Map ping genes controlling root morphology and root distribu tion in a double haploid population of rice”, Theoretical and Applied Genetics, Vol. 94, 1997, pp. 619- 632.
[11] J. Zhang, H. G. Zheng, A. Alarti, G. Pantuwan, T.T. Nguyen, J. N. Tripathy, A. K. Sarial, S. Robin, R. C. Babu, B. D. Nguyen, S. Sarkarung, A. Blum, H.T. Nguyen, “Locating genomic regions associated with components of drought resistance in rice: comparative mapping within and across species”, Theoretical and Applied Genetics, Vol. 103, 2001a, pp. 19-29.
[12] A. Kamoshita, L. J. Wade, M. L. Ali, M. S. Pathan, J. Zhang, S. Sakarung and H. T. Nguyen, “Mapping QTLs for root morphology of a rice population adapted to rainfed lowland conditions”, Theoretical and Applied Genetics, Vol. 104, 2002a, pp. 880-893.
[13] Z. Li, P. Mu, C. Li, H. Zhang, Z. Li, Y. Gao and X, “Wang QTL mapping of root traits in a doubled haploid population from a cross between upland and lowland japonica rice in three environments”, Theoretical and Applied Genetics, Vol. 110, 2005, pp. 1244-252.
[14] B. S. Zheng, L. Yang, W. P.,Zhang, C. Z. Mao, Y. R. Wu, K. K. Yi, Y. Liu and P. Wu, “Mapping QTLs and candidate genes for rice root traits under different water-supply conditions and comparative analysis across three populations”, Theoretical and Applied Genetics, Vol. 107: 2003, pp. 1505-1515.
[15] B. Zheng, L. Yang, C. Mao, Y. Huang and P. Wu, “Comparison of QTLs for rice seedling morphology under different water supply conditions”, Journal of Genetics and Genomics, Vol. 35, 2008, pp.473-484.
[16] K. Cui, J. Huang, Y. Xing, S. Yu, C. Xu and S. Peng, “Mapping QTLs for seedling characteristics under different water supply conditions in rice (Oryza sativa L.)”, Physiologia Plantarum, Vol. 132, 2008, 53-68.
[17] K. A. Steele, A. H. Price, H. E. Shashidhar, J. R. Witcombe, “Marker-assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety” Theoretical and Applied Genetics, Vol. 112, 2006, pp. 208-221.
[18] L. Liu, P. Mu, X. Li, Y. Qu, Y. Wang and Z. Li, “Localization of QTL for basal root thickness in japonica rice and effect of marker-assisted selection for a major QTL”, Euphytica, Vol. 164, 2008, pp. 729-737.
[19] A. Sinhababu and R.K. Kar, “Comparative responses of three fuel wood yielding plants to PEG-induced water stress at seedling stage”, Acta Physiologiae Plantarum, Vol. 25, 2003, pp. 403-409.
[20] S. Basu, A. Roychoudhury, P. P. Saha and D. N. Sengupta “Comparative analysis of some biochemical responses of three indica rice varieties during polyethylene glycol-mediated water stress exhibits distinct varietal difference”, Acta Physiologiae Plantarum, Vol. 32, No. 3, 2010, pp. 551-563.
[21] S. Yoshida and S. Hasegawa, “The rice root system: its development and function”, In: IRRI (ed) “Drought Resistance in Crops with the Emphasis on Rice”, International Rice Research Institute, Manila, 1982, pp 83-96.
[22] L. Liu, R. La?tte and D. Guan, “Wild Oryza species as potential sources of drought-adaptive traits” Euphytica, Vol. 138, 2004, pp. 149-161.
[23] A. J. ,Ali, J. L. Xu, A. M. Ismail, B. Y. Fu, C. H. M. Vijaykumar, Y. M. Gao, J. Domingo, R. Maghirang, S. B. Yu, G. Gregorio, S. Yanaghihara, M. Cohen, B. Carmen, D. Mackill and Z.K. Li, “Hidden diversity for abiotic and biotic stress tolerances in the primary gene pool of rice revealed by a large backcross breeding program”, Field Crops Research, Vol. 97, 2006, pp.66-76.
[24] H. R. Lafitte, C. H. M. Vijayakumar, Y. M. Gao, Y. Shi, J. L. Xu, B. Y. Fu, S. B. Yu, A. J. Ali, J. Domingo, R. Maghirang, R. Torres, D. Mackill, Z. K. Li, “Improvement of rice drought tolerance through backcross breeding: Evaluation of donors and selection in drought nurseries” Field Crops Research, Volume 97, No. 1, May 2006, pp. 77-86.
[25] A. Blum, “Osmotic adjustment and growth of barley genotypes under drought”, Crop Science Vol. 29, 1989, pp.230-233.
[26] S. Yoshida, D. A. Forno, J. H. Cock and K. A. Gomez, “Laboratory manual for physiological studies of rice”, 3rd Edn, 1976, The International Rice Research Institute, Manila.
[27] S. C. Gloria, O. Ito and A. A. Arcelia, “Physiological evaluation of responses of rice (Oryza sativa L.) to water deficit”, Plant Science, Vol. 163, 2002, pp. 815–827.
[28] G. B. Gregorio, D. Sendhira, R. D. Mendoza, N. L. Manigbas, J. P. Roxas and C. Q. Guerta, “Progress in breeding for salinity tolerance and associated abiotic stresses in rice”, Field Crops Research, Vol. 76, 2002, pp. 91-101.
[29] M. G. Murray and W. F. Thompson, “Rapid isolation of high molecular weight plant DNA”, Nucleic Acids Research. Vol. 8, 1980, pp. 4321-4325.
[30] S. Wang, C. J. Basten and Z. B. Zeng (2006b) Windows QTL Cartographer 2.5. North Carolina State University, Raleigh, NC. (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm)
[31] G. A. Churchill and R. W. Doerge, “Empirical threshold values for quantitative trait mapping” Genetics, Vol. 138, 1994, pp. 963-971.
[32] E. Fernandes, A. Pacheco and C. Penha-gon?alves, “Mapping of quantitative trait loci using the skew-normal distribution”, Journal of Zhejiang University Science, Vol. 8, No. 11, 2007, pp. 792-801.
[33] T. M. Gireesha, H. E. Shashidhar and S. Hittalmani, “Genetics of root morphology and related traits in an indica-indica based mapping population of rice (Oryza sativa L.)”, Research on Crops, Vol. 1, 2000, pp.208-215.
[34] S. P. Mane, H. E. Shashidhar, A. Kanbar and S. Hittalmani, “Molecular marker analysis for root length in a diverse germplasm of rice (Oryza sativa L.)”, Indian Journal of Genetics, Vol. 63, No.3, 2003, pp. 197-201.
[35] F. Asch, M. Dingkuhn, A. Sow and A. Audebert, “Drought-induced changes in rooting patterns and assimilate partitioning between root and shoot in upland rice”, Field Crops Research, Vol. 93, 2005, pp. 223-236.
[36] E. D. Redona and D. J. Mackill, “Mapping quantitative trait loci for seedling-vigor in rice using RFLPs” Theoretical and Applied Genetics, Vol.92, 1996, pp.395-402.
[37] C. G. Xu, X. Q. Li, Y. Xue, Y. W. Huang, J. Gao and Y. Z. Xing, “Comparison of quantitative trait loci controlling seedling characteristics at two seedling stages using rice recombinant inbred lines”, Theoretical and Applied Genetics, Vol. 109, 2004, pp.640-647.
[38] A. H. Price, K. A. Steele, B. J. Moore, P. B. Barraclough and L. J. Clark, “A combined RFLP and AFLP linkage map of upland rice (Oryza sativa L.) used to identify QTLs for root-penetration ability”, Theoretical and Applied Genetics, Vol. 100, 2000, pp.49-56.
[39] J. C. Xu, J. Z. Li, X. W. Zheng, L. X. Zou and L. H. Zhu, “QTL mapping of the root traits in rice seedling”, Acta Genetica Sinica, Vol. 28, 2001, pp.433-438.
[40] E. A. Bray, “Plant responses to water deficit”, Trends in Plant Science, Vol. 2, 1997, pp.48-54.
[41] A. Kathiresan, H.R. Lafitte, J. Chen, L. Mansueto, R . Bruskiewich and J. Bennett, “Gene expression microarrays and their application in drought stress research”, Field Crops Research, Vol. 97, 2006, pp. 101-110.
[42] M. A. Rabbani, K. Maruyama, H. Abe, A. Khan, K. Katsura, Y. Ito, K. Yoshiwara, M. Seki, K. Shinozaki, Yamaguchi and K. Shinozaki, “Monitoring expression profiles of rice genes under cold, drought and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses”, Plant Physiology, Vol. 133, 2003, pp.1755-1767.
[43] G. H. Salekdeh, J. Siopongco, L. J. Wade, B. Ghareyazie and J. Bennett, “A proteomic approach to analyzing drought and salt responsiveness in rice”, Field Crops Research, Vol. 76, 2002, pp. 199-219.
[44] M. Rodriguez, E. Canales, C. J. Borroto, E. Carmona, J. Lopez, M. Pujol and O Borras-Hidalgo, “Identification of genes induced upon water-deficit stress in a drought- tolerant rice cultivar” Journal of Plant Physiology, Vol. 163, 2006, pp. 577-584
[45] A. R. Rabello, C. M. Guimaraes, P. H. N. Rangel, F. R. Silva, D. Seixas, E. D. Souza, A. C. M. Brasileiro, C. R. Spehar, M. E. Ferreira and A. Mehta, “Identification of drought-responsive genes in roots of upland rice (Oryza sativa L)” BMC Genomics, Vol. 9, 2008, pp. 485
[46] A. Kamoshita, J. X. Zhang, J. Siopongco, S. Sakarung, H. T. Nguyen and L. J. Wade, “Effects of phenotyping environment on identification of quantitative trait loci for rice root morphology under anaerobic conditions”, Crop Science, Vol. 42, 2002b, pp. 255-265.
[47] W. P. Zhang, X. Y. Shen, P. Wu, B. Hu and C. Y. Liao, “QTLs and epistasis for seminal root length under a different water supply in rice (Oryza sativa L.)”, Theoretical and Applied Genetics, Vol.103, 2001b, pp. 118-123.
[48] K. MacMillan, K. Emrich, H. P. Piepho, C. E. Mullins and A. H. Price, “Assessing the importance of genotype × environment interaction for root traits in rice using a mapping population II: conventional QTL analysis” Theoretical and Applied Genetics, Vol. 113: 2006, pp. 953-964.
[49] S. B. Yu, J. X. Li, C. G. Xu, Y. F. Tan, Y. J. Gao, X. H .Li, Q. Zhang and M. A. Saghai Maroof, “Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid”, Proceedins of the National Academy of Sciences, USA, Vol. 94, No.17, 1997, pp.9226-9231.
[50] Z. K. Li, L. J. Luo, H. W. Mei, Q.Y. Shu, D. L. Wang, R. Tabien, D. B. Zhong, C. S. Ying, J. W. Stancel, G. S. Khush and A. H. Paterson, “Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in Rice: I Biomass and grain yield”, Genetics Vol. 158, 2001, pp.1737-1753.
[51] Y. Z. Xing, Y. F. Tan, J.P. Hua, X. L. Sun, C. G. Xu and Q. Zhang, “Characterization of the main effects epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice” Theoretical and Applied Genetics, Vol. 105, 2002, pp. 248-257.
[52] J. C. Lanceras, G. Pantuwan, B. Jongdee and T. Toojinda “Quantitative trait loci associated with drought tolerance at reproductive stage in rice” Plant Physiology, Vol. 135, 2004, pp. 384-399.
[53] C. Brondani, P. H. N. Rangel, R. P. V. Brondani and M. E. Ferreira, “QTL mapping and introgression of yield- related traits from Oryza glumaepetula to cultivated rice (Oryza sativa L). using microsatellite makers”, Theoretical and Applied Genetics, Vol. 104, 2002, pp. 1192-1203.
[54] C. Li, A. Zhou and T. Sang, “Genetic analysis of rice domestication syndrome with the wild annual species, Oryza nivara”. New Phytology, Vol. 170, 2006, pp. 185-193.
[55] S. R. McCouch, M. Sweeney, J. Li, H. Jiang, M. Thomson, E. Septiningsih, J. Edwards, P. Moncada, J. Xiao, A. Garris, T. Tai, C. Martinez, J. Tohme, M. Sugiono, A. McClung, L. P. Yuan and S. N. Ahn, “Through the genetic bottleneck: O. rufipogon as a source of trait-enhancing alleles for O. sativa L.” Euphytica, Vol. 154, 2007, pp. 317-339.
[56] S. R. McCouch and R. W. Doerge, “QTL mapping in rice”. Trends in Genetics, Vol. 11, 1995, pp. 482-487.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.