Origin and Evolution of Life Constraints on the Solar Model

Download Download as PDF (Size:186KB)  HTML    PP. 587-594  


Life arose as a non-equilibrium thermodynamic process to dissipate the photon potential generated by the hot Sun and cold outer space. Evidence from the geochemical record of the evolutionary history of life on Earth suggests that life originated in a hot aqueous environment dissipating UV light and evolved later to dissipate visible light. This evidence places constraints on models of solar origin and evolution. The standard solar model seems less compatible with the data than does the pulsar centered solar model.

Cite this paper

K. Michaelian and O. Manuel, "Origin and Evolution of Life Constraints on the Solar Model," Journal of Modern Physics, Vol. 2 No. 6A, 2011, pp. 587-594. doi: 10.4236/jmp.2011.226068.


[1] L. E. Orgel, “Pre-biotic chemistry and the origin of the RNA world,” Critical Reviews in Biochemistry and Molecular Biology, Vol. 39, 2004, pp. 99-123.
[2] K. Michaelian, “Entropy Production and the Origin of Life, this special issue,” JMP. “Recent Advances in the Thermodynamics of Life and Evolution”, Ed. K. Michaelian, 2011; Thermodynamic dissipation theory for the origin of life, Earth Syst .Dynam., Vol. 2, 2011, pp. 37-51.www.earth-syst-dynam.net/2/37/2011/.
[3] D. Voet, W. B. Gratzer, R. A. Cox and P. Doty, “Absorption spectra of nucleotides, polynucleotides and nucleic acids in the far ultraviolet,” Biopolymers, Vol. 1, 1963, pp. 193-208
[4] P. R. Callis, “Electronic states and luminescence of nucleic acid systems,” Annual Review of Physical Chemistry, Vol. 34, 1983, pp. 329-357.
[5] C. T. Middleton, K. de la Harpe, C. Su, Y. K. Law, C. E. Crespo-Hernández and B. Kohler, “DNA Excited—State dynamics: from single bases to the double helix,” Annu. Rev. Phys. Chem., Vol. 60, 2009, pp. 217-239.
[6] J. Oró and A. P. Kimball, “Synthesis of purines under possible primitive Earth conditions, II. Purine intermediates from hydrogen cyanide,” Archives of Biochemistry and Biophysics, Vol. 96, pp. 293-313, 1962.
[7] R. Chang, “Physical Chemistry for the Chemical and Biological Sciences,” University Science Books, Sausalito, California, 2000.
[8] I. Cnossen, J. Sanz-Forcada, F. Favata, O. Witasse, T. Zegers and N. F. Arnold, “The habitat of early life: Solar X-ray and UV radiation at Earth’s surface 4–3.5 billion years ago,” J. Geophys. Res., vol. 112, 2007, E02008, doi:10.1029/2006JE002784
[9] D. M. Gates, “Biophysical Ecology,” Springer-Verlag, New York Inc., ISBN 0-387-90414-X, 1980.
[10] K. Michaelian, “Thermodynamic function of life, arXiv: 0907.0040v2 [physics.gen-ph] 2009,” Biological catalysis of the hydrological cycle: life’s thermodynamic function, Hydrology and Earth System Science Discussion, Vol. 8, 2011, pp. 1093-1123. doi:10.5194/hessd-8-1093-2011,
[11] T. Nozawa, J. T. Trost, T. Fukada, M. Hatano, J. D. McManus and R. D. Blankenship, “Properties of the reaction center of the thermophilic purple photosynthetic bacterium Chromatium tepidum,” Biochimica et Biophysica Acta, vol. 894, 1987, pp. 468-476.
[12] K. Whitehead and J. I. Hedges, “Analysis of mycosporine-like amino acids in plankton by liquid chromatography electrospray ionization mass spectrometry,” Marine Chemistry, vol. 80, 2002, pp. 27-39.
[13] M. P. Kolesnikov, and I. A. Egorov, “Porphyrins and phycobilins in Precambrian rocks,” Origins of Life and Evolution of Biospheres, vol. 8, 1977, pp. 383-390. doi: 10.1007/BF00927910
[14] J. E. Lovelock, “The Ages of Gaia: A Biography of Our Living Earth,” W. W. Norton & Company, New York, 1988.
[15] W. D. Harkins, “The evolution of the elements and the stability of complex atoms,” Journal of the American Chemical Society, vol. 39, 1917, pp. 856-879.
[16] C. H. Payne, “Stellar atmospheres,” In: H. Shapley, Ed., Harvard Observatory Monographs, Cambridge, MA, 215 No. 1, pp, 1925.
[17] H. N. Russell, “On the composition of the Sun's atmosphere,” Astrophysics Journal, vol. 70, 1929, pp. 11-82,
[18] V. M. Goldschmidt, “Geochemische Verteilungsgestze der Elemente. IX. Die Mengenverh?ltnisse der Elemente und der Atom-arten, Skrifter Norske Videnskaps-Akad.,” Oslo I Math.-Naturv. Klasse, No. 4, 1938, p. 148.
[19] F. Hoyle, “Home Is Where The Wind Blows,” University Science Books, Mill Valley, CA, USA, 1994, pp. 153-154,
[20] F. Hoyle, “The chemical composition of the stars,” Monthly Notices of the Royal Astronomical Society, vol. 106, 1946, pp. 255-259. http://tinyurl.com/4uzx7wd
[21] F. Hoyle, “The synthesis of the elements from hydrogen,” Monthly Notices of the Royal Astronomical Society, vol. 106, 1946, pp. 343-383. http://tinyurl.com/6elx9ly http://articles.adsabs.harvard.edu//full/1946MNRAS.106..343H/0000343.000.html
[22] W. Prout, “On the relation between the specific gravities of bodies in their gaseous state and the weights of their atoms,” Annals of Philosophy, vol. 6, 1815, pp. 321-330.http://web.lemoyne.edu/~giunta/ea/PROUTann.HTML; “Correction of a mistake in the essay on the relation between the specific gravities of bodies in their gaseous state and the weights of their atoms,” Annals of Philosophy, Vol. 7, 1816, pp. 111-113,. http://web.lemoyne.edu/~giunta/ea/PROUTann.HTML
[23] E. M. Burbidge, G. R. Burbidge, W. A. Fowler and F. Hoyle (B2FH), “Synthesis of the elements in stars,” Reviews of Modern Physics, vol. 29, 1957, pp. 547-650.
[24] D. D. Clayton, “Principles of Stellar Evolution and Nucleosynthesis,” 2nd Edition, University of Chicago Press, Chicago, 1983. .
[25] C. E. Rolfs and W. S. Rodney, “Cauldrons in the Cosmos,” In: D. N. Schramm, Ed., University of Chicago Press, Chicago, 1988.
[26] E. Chaisson and S. McMillan, “Astronomy Today,” 3rd Edition, Prentice-Hall, Englewood Cliffs, 1999.
[27] R. Jr. Davis, D. S. Harmer and K. C. Hoffman, “Search for neutrinos from the Sun,” Physical Review Letters, vol. 20, 1968, pp. 1205-1209.
[28] J. N. Bahcall and R. Jr. Davis, “Solar-neutrinos: A scientific puzzle,” Science, vol. 191, 1976, pp. 264-267.
[29] T. Kirsten, “Solar neutrino experiments: Results and implications,” Reviews of Modern Physics, vol. 71, 1999, pp. 1213-1232.
[30] A. Dar and G. Shaviv, “Standard solar neutrinos,” Astrophysics Journal, vol. 468, 1996, pp. 933-946. http://arxiv.org/pdf/astro-ph/9604009v1
[31] H. Bethe, “Energy production in stars,” Physical Review, vol. 55, 1938, pp. 103-103.
[32] M. Newman, “Evolution of the solar constant, in Origins of Life and Evolution of Biospheres,” vol. 10, 1980, pp. 105-110.
[33] C. Sagan and C. Chyba, “The early Faint Sun paradox: Organic shielding of Ultraviolet-labile greenhouse gases,” Science, vol. 276, 1997, pp. 1217-1221.
[34] O. Manuel, C. Bolon, and P. Jangam, “The sun’s origin, composition and source of energy, Lunar and Planetary,” Science, Vol. XXIX, 2001. http://www.omatumr.com/lpsc.prn.pdf
[35] O. Manuel, B. W. Ninham and S. E. Friberg, “Super-fluidity in the solar interior: Implications for solar eruptions and climate,” Journal of Fusion Energy, Vol. 21, 2002, pp. 193-198. http://arxiv.org/pdf/astro-ph/0501441v1
[36] O. Manuel and Friberg, “Stig: Composition of the solar interior: Information from isotope ratios,” European Space Agency, SP-517, Ed., Lacoste, Hugette, 2003, pp. 345-348.
[37] Q. R. Ahmad, et al., “Measurement of charged current interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory,” Physical Review Letters, Vol. 87, No. 7, 2001, p. 6. http://prl.aps.org/abstract/PRL/v87/i7/e071301
[38] Q. R. Ahmad, et al., “Direct evidence for neutrino flavor transfor-mation from neutral-current interactions in the Sudbury Neutrino Observatory,” Physical Review Letters, Vol. 89, No. 1, 2002, p. 6. http://prl.aps.org/abstract/PRL/v89/i1/e011301
[39] A. A. Aguilar-Arevalo, et al., “Event excess in the MiniBooNE search for oscillations,” Physical Review Letters, Vol. 105, No. 18, 2010, p. 5. http://prl.aps.org/abstract/PRL/v105/i18/e181801
[40] S.-S. Huang, “A nuclear-accretion theory of star formation,” Astronomical Society of the Pacific, Vol. 69, pp. 427-430, 1957.
[41] O. K. Manuel, “Neutrino Repulsion,” The APEIRON Journal, in press, 2011, p. 19. http://arxiv.org/pdf/1102.1499v1
[42] W. Baade and F. Zwicky, “Cosmic rays from super-novae,” Proceedings of the National Academy of Sciences, Vol. 20, 1934, pp. 259-263.
[43] A. Wolszczan and D. Frail, “A planetary system around the millisecond pulsar 1257 + 12,” Nature, 355, 145-147, 1992; A. Wolszczan, “Confirmation of Earth mass planets orbiting the millisecond pulsar 1257 + 12,” Science, Vol. 264, 1994, pp. 538-542.
[44] B. W. Ninham, “Charged Bose gas in astrophysics,” Physics Letters, 4, 1963, pp. 278-279.
[45] V. Dzhunushaliev, V. Folomeev, B. Kleihaus and J. Kunz, “A star harbouring a wormhole at its center,” 22 February 201, p. 15 http://arxiv.org/pdf/1102.4454v1
[46] P. K. Kuroda and W. A. Myers, “Plutonium-244 fission xenon in the most primitive meteorites,” Radiochimica Acta, Vol. 64, 1994, pp. 167-174.
[47] O. Manuel, S. A. Kamat and M. Mozina, “The Sun is a plasma diffuser that sorts atoms by mass,” Physics of Atomic Nuclei, Vol. 69, 2006, pp. 1847-1856.
[48] J. R. Cronin and S. Pizzarello, “Enantiomeric excesses in meteoritic amino acids,” Science, Vol. 274, 1997, pp. 951-955.
[49] O. Kargaltsev, G. G. Pavlov and J. A. Wong, “Young energetic PSR J1617-5055, Its nebula, and TeV source HESS J1616-508,” Astrophysical Journal, Vol. 690, 2009,pp. 891-901. http://adsabs.harvard.edu/abs/2009ApJ...690..891K
[50] S. Bowyer, “Detection of neutron stars in the extreme ultraviolet, Flares and Flashes, Lecture Notes in Physics,” 1995. http://www.springerlink.com/content/y1564687471l4841/
[51] L. P. Knauth, “Isotopic signatures and sedimentary records,” In: N. Clauer and S. Chaudhuri, Eds., Lecture Notes in Earth Sciences #43, Springer-Verlag, Berlin, 1992, pp. 123-152.
[52] D. R. Lowe and M. M. Tice, “Geologic evidence for Archean atmospheric and climatic evolution: Fluctuating levels of CO2, CH4, and O2 with an overriding tectonic control,” Geology, Vol. 32, pp. 493-496, 2004.
[53] J. S Kargel, “Mars—A warmer wetter planet, ” Springer Verlag, Berlin, 2004, ISBN 1-85233-568-8.
[54] D. A. Minton and R. Malhotra, “Assessing the massive young Sun hypothesis to solve the warm young Earth puzzle,” The Astrophysical Journal, Vol. 660, 2007, pp. 1700-1706.
[55] C. Sagan, and G. Mullen, “Earth and Mars: Evolution of atmospheres and surface temperatures,” Science, vol. 177, 1972, pp. 52-56.
[56] M. T. Rosing, D. K. Bird, N. H. Sleep and C. J. Bjerrum, “No climate paradox under the faint early Sun,” Nature Letters, vol. 464, 2010. doi:10.1038/nature08955
[57] W. R. Kuhn and S. K. Atreya, “Ammonia photolysis and the greenhouse effect in the primordial atmosphere of the earth,” Icarus, vol. 37, 1979, pp. 207-213.
[58] J. F. Kasting, “Stability of ammonia in the primitive terrestrial atmosphere,” J. Geophys. Res., vol. 87, 1982, pp. 3091-3098.
[59] R. Rye, P. H. Kuo and H. D. Holland, “Atmospheric carbon-dioxide concentrations before 2.2-billion years ago,” Nature, vol. 378, 1995, pp. 603-605.
[60] N. H. Sleep and K. Zahnle, “Carbon dioxide cycling and implications for climate on ancient Earth,” J. Geophys. Res., Planets, vol. 106, 2001, pp. 1373-1399.
[61] A. M. Hessler, D. R. Lowe, R. L. Jones and D. K. Bird, “A lower limit for atmospheric carbon dioxide levels 3.2 billion years ago,” Nature, vol. 428, 2004, pp. 736-738.
[62] N. D. Sheldon, “Precambrian paleosols and atmospheric CO2 levels,” Precambr. Res., vol. 147, 2006, pp. 148-155.
[63] E. T. Wolf and O. B. Toon, “Fractal organic hazes provided an ultraviolet shield for early Earth,” Science, vol. 328, 2010, pp. 1266-1268.
[64] O. Kalisky, J. Feitelson and M. Ottolenghi, “Photochemistry and Fluorescence of Bacteriorhodopsin Excited in its 280-nm Absorption Band,” Biochemistry, vol. 20, 1981, pp. 205-209.
[65] J. Xiong and K. E. Bauer, “Complex Evolution of Photosynthesis,” Annu. Rev. Plant Biol., vol. 53, 2002, pp. 503-21.
[66] K. Mahdavian, M. Ghorbanli and Kh. M. Kalantari, “The effects of Ultraviolet radiation on the contents of chlorophyll, flavonoid, anthocyanin and proline in Capsicum annuum L,” Turk. J. Bot., vol. 32, 2008, pp. 25-33.
[67] M. G. Tehrany, H. Lammer, F. Selsis, I. Ribas, E. F. Guinan and A. Hanslmeier, “The particle and radiation environment of the early Sun,” Proceedings of the 10th Solar Physics Meeting, Prague, 9-14 September 2002, pp. 209-212. http://adsabs.harvard.edu/full/2002ESASP.506..209T
[68] K. Michaelian, “Homochirality through photon-induced melting of RNA/DNA: the thermodynamic dissipation theory of the origin of life,” 2010. http://hdl.handle.net/10101/npre.2010.5177.1
[69] W. A. Bonner and E. Rubenstein, “Supernovae, neutron stars and biomolecular chirality,” Biosystems, vol. 20, 1987, pp. 99-111.
[70] D. B. Cline, “On the physical origin of the homochirality of life,” European Review, vol. 13, 2005, p. 4959.
[71] S. Pizzarello, M. Zolensky and K. A. Turk, “Nonracemic isovaline in the Murchison meteorite: Chiral distribution and mineral association,” Geochimica et Cosmochimica Acta, vol. 67, 2003, pp. 1589-1595.
[72] J. L. Bada, “Amino acid cosmogeochemistry,” Phil. Trans . R. Soc. Lond., B vol. 333, 1991, pp. 349-358.
[73] S. Pizzarello and J. R. Cronin, “Non-Racemic amino acids in the Murray and Murchison meteorites,” Geochimica et Cosmochimica Acta, vol. 64, 2000, pp. 329-338.

comments powered by Disqus

Copyright © 2015 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.