Can the Iberian Floristic Diversity Withstand Near-Future Climate Change?

Download Download as PDF (Size:4806KB)  HTML   XML  PP. 1089-1101  
DOI: 10.4236/oje.2014.417089    2,140 Downloads   2,496 Views   Citations


We assess how effectively the current network of protected areas (PAs) across the Iberian Peninsula will conserve plant diversity under near-future (2020) climate change. We computed 3267 MAXENT environmental niche models (ENMs) at 1-km spatial resolution for known Iberian plant species under two climate scenarios (1950-2000 baseline & 2020). To predict near-future species distributions across the network of Iberian and Balearics PAs, we combined projections of species’ ENMs with simulations of propagule dispersal by using six scenarios of annual dispersal rates (no dispersal, 0.1 km, 0.5 km, 1 km, 2 km and unlimited). Mined PA grid cell values for each species were then analyzed. We forecast 3% overall floristic diversity richness loss by 2020. The habitat of regionally extant species will contract on average by 13.14%. Niche movement exceeds 1 km per annum for 30% of extant species. While the southerly range margin of northern plant species retracts northward at 8.9 km per decade, overall niche movement is more easterly and westerly than northerly. There is little expansion of the northern range margin of southern plant species even under unlimited dispersal. Regardless of propagule dispersal rate, altitudinal niche movement of +25 m per decade is strongest for northern species. Pyrenees flora is most vulnerable to near-future climate change with many northern plant species responding by shifting their range westerly and easterly rather than northerly. Northern humid habitats will be particularly vulnerable to near-future climate change. Andalusian National Parks will become important southern biodiversity refuges. With limited human intervention (particularly in the Pyrenees), we conclude that floristic diversity in Iberian PAs should withstand near-future climate change.

Cite this paper

Heap, M. , Culham, A. , Lenoir, J. and Gavilán, R. (2014) Can the Iberian Floristic Diversity Withstand Near-Future Climate Change?. Open Journal of Ecology, 4, 1089-1101. doi: 10.4236/oje.2014.417089.


[1] Chen, I.C., Hill, J.K., Ohlemüller, R., Roy, D.B. and Thomas, C.D. (2011) Rapid Range Shifts of Species Associated with High Levels of Climate Warming. Science, 333, 1024-1026.
[2] Parmesan, C. and Yohe, G. (2003) A Globally Coherent Fingerprint of Climate Change Impacts across Natural Systems. Nature, 421, 37-42.
[3] Lenoir, J., Gégout, J.C., Guisan, A., Vittoz, P., Wohlgemuth, T., et al. (2010) Going against the Flow: Potential Mechanisms for Unexpected Downslope Range Shifts in a Warming Climate. Ecography, 33, 295-303.
[4] Crimmins, S.M., Dobrowski, S.Z., Greenberg, J.A., Abatzoglou, J.T. and Mynsberge, A.R. (2011) Changes in Climatic Water Balance Drive Downhill Shifts in Plant Species’ Optimum Elevations. Science, 331, 324-327.
[5] VanDerWal, J., Murphy, H.T., Kutt, A.S., Perkins, G.C., Bateman, B.L., et al. (2013) Focus on Poleward Shifts in Species’ Distribution Underestimates the Fingerprint of Climate Change. Nature Climate Change, 3, 239-243.
[6] Cannone, N. and Pignatti, S. (2014) Ecological Responses of Plant Species and Communities to Climate Warming: Upward Shift or Range Filling Processes? Climatic Change, 123, 201-214.
[7] Lenoir, J. and Svenning, J.C. (2014) Climate-Related Range Shifts—A Global Multidimensional Synthesis and New Research Directions. Ecography.
[8] Groom, Q.J. (2013) Some Poleward Movement of British Native Vascular Plants Is Occurring, but the Fingerprint of Climate Change Is Not Evident. PeerJ, 1, e77.
[9] Colwell, R.K., Brehm, G., Cardelús, C.L., Gilman, A.C. and Longino, J.T. (2008) Global Warming, Elevational Range Shifts, and Lowland Biotic Attrition in the Wet Tropics. Science, 322, 258-261.
[10] Feeley, K.J. and Silman, M.R. (2010) Biotic Attrition from Tropical Forests Correcting for Truncated Temperature Niches. Global Change Biology, 16, 1830-1836.
[11] Fernández-González, F., Loidi, J., Moreno, J.C., Del Arco, M., Férnández-Cancio, A., et al. (2005) Impactos sobre la biodiversidad vegetal. In: Moreno, J.M., Ed., Evaluación preliminar de los impactos en Espana por efecto del cambio climático, Ministerio de MedioAmbiente, Madrid, 183-248.
[12] Araújo, M.B., Alagador, D., Cabeza, M., Nogués-Bravo, D. and Thuiller, W. (2011) Climate Change Threatens European Conservation Areas. Ecology Letters, 14, 484-492.
[13] Thuiller, W., Lavorel, S., Araújo, M.B., Sykes, M.T. and Prentice, I.C. (2005) Climate Change Threats to Plant Diversity in Europe. Proceedings of the National Academy of Sciences of the United States of America, 102, 8245-8250.
[14] Lenoir, J., Graae, B.J., Aarrestad, P.A., Alsos, I.G., Armbruster, W.S., Austrheim, G., et al. (2013) Local Temperatures Inferred from Plant Communities Suggest Strong Spatial Buffering of Climate Warming across Northern Europe. Global Change Biology, 19, 1470-1481.
[15] Willis, K.J. and Bhagwat, S.A. (2009) Biodiversity and Climate Change. Science, 326, 806-807.
[16] Dullinger, S., Gattringer, A., Thuiller, W., Moser, D., Zimmermann, N.E., Guisan, A., et al. (2012) Extinction Debt of High-Mountain Plants under Twenty-First-Century Climate Change. Nature Climate Change, 2, 619-622.
[17] Heap, M.J., Culham, A. and Osborne, J. (2013) The Benefits of a Compute Cluster Approach to High Spatial Resolution Biodiversity Richness Modelling: Projecting the Impact of Climate Change on Mediterranean Flora. The International Journal of Climate Change: Impacts and Responses, 4, 115-218.
[18] Thuiller, W., Albert, C., Araújo, M.B., Berry, P.M., Cabeza, M., Guisan, A., et al. (2008) Predicting Global Change Impacts on Plant Species’ Distributions: Future Challenges. Perspectives in Plant Ecology, Evolution and Systematics, 9, 137-152.
[19] Yesson, C. and Culham, A. (2006) A Phyloclimatic Study of Cyclamen. BMC Evolutionary Biology, 6, 72.
[20] Phillips, S.J., Anderson, R.P. and Schapire, R.E. (2006) Maximum Entropy Modeling of Species Geographic Distributions. Ecological Modelling, 190, 231-259.
[21] Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. and Jarvis, A. (2005) Very High Resolution Interpolated Climate Surfaces for Global Land Areas. International Journal of Climatology, 25, 1965-1978.
[22] FAO and ISRIC (2010) Harmonized World Soil Database (Version 1.1). FAO, Rome and IIASA, Laxenburg.
[23] Hansen, M., DeFries, R., Townshend, J.R.G. and Sohlberg, R. (1998) UMD Global Land Cover Classification, 1 Kilometer, 1.0. Department of Geography, University of Maryland, College Park, 1981-1994.
[24] Pliscoff, P., Luebert, F., Hilger, H.H. and Guisan, A. (2014) Effects of Alternative Sets of Climatic Predictors on Species Distribution Models and Associated Estimates of Extinction Risk: A Test with Plants in an Arid Environment. Ecological Modelling, 288, 166-177.
[25] Ramirez-Villegas, J. and Jarvis, A. (2010) Downscaling Global Circulation Model Outputs: The Delta Method Decision and Policy Analysis. Working Paper No. 1, Policy Analysis 1, 1-18.
[26] Thiers, B. (2011) Continuously Updated. Index Herbariorum: A Global Directory of Public Herbaria and Associated Staff. New York Botanical Garden’s Virtual Herbarium.
[27] Yesson, C., Brewer, P.W., Sutton, T., Caithness, N., Pahwa, J.S., Burgess, M. and Culham, A. (2007) How Global Is the Global Biodiversity Information Facility? PLoS ONE, 2, e1124.
[28] Heap, M.J. and Culham, A. (2010) Automated Pre-Processing Strategies for Species Occurrence Data Used in Biodiversity Modelling. In: Setchi, R., Jordanov, I., Howlett, R.J. and Jain, L.C., Eds., Knowledge-Based and Intelligent Information and Engineering Systems, Springer Berlin Heidelberg, Berlin, 517-526.
[29] Castroviejo, S. (1986) Flora iberica: Plantas vasculares de la Península Ibérica e Islas Baleares.
[30] Casas, C. (1998) The Anthocerotae and Hepaticae of Spain and Balearic Islands: A Preliminary Checklist. Orsis, 13, 17-26.
[31] Rivas-Martínez, S., Diaz, T.E., Fernandez-Gonzalez, F., Izco, J., Loidi, J., Lous?, M. and Penas, á. (2002) Vascular Plant Communities of Spain and Portugal: Addenda to the Syntaxonomical Checklist of 2001. Itinera Geobotanica, 15, 5-922.
[32] Euro+Med (2006) Euro+Med PlantBase—The Information Resource for Euro-Mediterranean Plant Diversity.
[33] The Plant List (2010) Version 1.
[34] Ros, R.M., Mazimpaka, V., Abou-Salama, U., Aleffi, M., Blockeel, T.L., et al. (2013) Mosses of the Mediterranean, an Annotated Checklist. Cryptogamie, Bryologie, 34, 99-283.
[35] Roskov, Y., Kunze, T., Paglinawan, L., Orrell, T., Nicolson, D., et al. (2013) Species 2000 & ITIS Catalogue of Life. 2013 Annual Checklist, Species 2013.
[36] Encyclopedia of Life (2014)
[37] Pittman, S.J. and Brown, K.A. (2011) Multi-Scale Approach for Predicting Fish Species Distributions across Coral Reef Seascapes. PloS ONE, 6, e20583.
[38] Morin, X. and Thuiller, W. (2009) Comparing Niche-and Process-Based Models to Reduce Prediction Uncertainty in Species Range Shifts under Climate Change. Ecology, 90, 1301-1313.
[39] Brommer, J.E. (2004) The Range Margins of Northern Birds Shift Polewards. Annales Zoologici Fennici, 41, 391-397.
[40] Heubes, J., Schmidt, M., Stuch, B., García Márquez, J.R., Wittig, R., Zizka, G., et al. (2013) The Projected Impact of Climate and Land Use Change on Plant Diversity: An Example from West Africa. Journal of Arid Environments, 96, 48-54.
[41] Gavilán, R.G. (2005) The Use of Climatic Parameters and Indices in Vegetation Distribution. A Case Study in the Spanish Sistema Central. International Journal of Biometeorology, 50, 111-120.
[42] Hampe, A. and Jump, A.S. (2011) Climate Relicts: Past, Present, Future. Annual Review of Ecology, Evolution, and Systematics, 42, 313-333.
[43] Thomas, C.D. (2011) Translocation of Species, Climate Change, and the End of Trying to Recreate Past Ecological Communities. Trends in Ecology & Evolution, 26, 216-221.
[44] Pauli, H., Gottfried, M., Dullinger, S., Abdaladze, O., Akhalkatsi, M., Alonso, J.L.B., et al. (2012) Recent Plant Diversity Changes on Europe’s Mountain Summits. Science, 336, 353-355.
[45] Gottfried, M., Pauli, H., Futschik, A., Akhalkatsi, M., Barancok, P., Alonso, J.L.B., et al. (2012) Continent-Wide Response of Mountain Vegetation to Climate Change. Nature Climate Change, 2, 111-115.
[46] Alagador, D., Cerdeira, J.O. and Araújo, M.B. (2014) Shifting Protected Areas: Scheduling Spatial Priorities under Climate Change. Journal of Applied Ecology, 51, 703-713.
[47] Dobrowski, S.Z. (2011) A Climatic Basis for Microrefugia: The Influence of Terrain on Climate. Global Change Biology, 17, 1022-1035.
[48] Warren, R., Van DerWal, J., Price, J., Welbergen, J.A., Atkinson, I., Ramirez-Villegas, J., et al. (2013) Quantifying the Benefit of Early Climate Change Mitigation in Avoiding Biodiversity Loss. Nature Climate Change, 3, 678-682.
[49] Dlugokencky, E. and Tans, P. (2014) NOAA/ESRL.

comments powered by Disqus

Copyright © 2017 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.