OJDM> Vol.4 No.3, July 2014

The Antimedian Function on Paths

DownloadDownload as PDF (Size:946KB)  HTML   XML  PP. 77-88  

ABSTRACT

An antimedian of a sequence  of elements of a finite metric space  is an element  for which  is a maximum. The function with domain the set of all finite sequences on , and defined by {: is an antimedian of } is called the antimedian function on . In this note, the antimedian function on finite paths is axiomatically characterized.

Cite this paper

Ortega, O. and Wang, Y. (2014) The Antimedian Function on Paths. Open Journal of Discrete Mathematics, 4, 77-88. doi: 10.4236/ojdm.2014.43011.

References

[1] Church, R.L. and Garinkel, R.S. (1978) Locating an Obnoxious Facility on a Network. Transportation Science, 12, 107-118.
http://dx.doi.org/10.1287/trsc.12.2.107
[2] Minieka, E. (1983) Anti-Centers and Anti-Medians of a Network. Networks, 13, 359-365.
http://dx.doi.org/10.1002/net.1027
[3] Ting, S.S. (1984) A Linear-Time Algorithm for Maxisum Facility Location on Tree Networks. Transportation Science, 18, 76-84.
http://dx.doi.org/10.1287/trsc.18.1.76
[4] Zelinka, B. (1968) Medians and Peripherians of Trees. Archiv der Mathematik, 4, 87-95.
[5] Burkard, R.E., Dollani, H., Lin, Y. and Rote, G. (2001) The Obnoxious Center Problem on a Tree. SIAM Journal on Discrete Mathematics, 14, 498-509.
http://dx.doi.org/10.1137/S0895480198340967
[6] Drezner, Z. and Wesolowsky, G.O. (1985) Location of Multiple Obnoxious Facilities. Transportation Science, 19, 193-202.
http://dx.doi.org/10.1287/trsc.19.3.193
[7] Labbé, M. (1990) Location of an Obnoxious Facility on a Network: A Voting Approach. Networks, 20, 197-207.
http://dx.doi.org/10.1002/net.3230200206
[8] Holzman, R. (1990) An Axiomatic Approach to Location on Networks. Mathematics of Operations Research, 15, 553-563.
[9] Vohra, R. (1996) An Axiomatic Characterization of Some Location in Trees. European Journal of Operational Research, 90, 78-84.
http://dx.doi.org/10.1016/0377-2217(94)00330-0
[10] Foster, D.P. and Vohra, R. (1998) An Axiomatic Characterization of a Class of Location in Tree Networks. Operational Research, 46, 347-354.
http://dx.doi.org/10.1287/opre.46.3.347
[11] Barthélemy, J.P. and McMorris, F.R. (1986) The Median Procedure for N-Trees. Journal of Classification, 3, 329-334.
http://dx.doi.org/10.1007/BF01894194
[12] Barthélemy, J.P. and Monjardet, B. (1981) The Median Procedure in Cluster Analysis and Social Choice Theory. Mathematical Social Sciences, 1, 235-268.
http://dx.doi.org/10.1016/0165-4896(81)90041-X
[13] Kriston, G. and Ortega, O. (2013) The Median Function on Trees. Discrete Mathematics, Algorithms and Applications, 4.
[14] McMorris, F.R., Mulder, H.M. and Ortega, O. (2010) Axiomatic Characterization of the Mean Function on Trees. Discrete Mathematics, Algorithms and Applications, 2, 313-329.
[15] McMorris, F.R., Mulder, H.M. and Ortega, O. (2012) The lp-Function on Trees. Networks, 60, 94-102.
[16] McMorris, F.R., Mulder, H.M. and Powers, R.C. (2003) The Median Function on Distributive Semilattices. Discrete Applied Mathematics, 127, 319-324.
http://dx.doi.org/10.1016/S0166-218X(02)00213-5
[17] McMorris, F.R., Mulder, H.M. and Roberts, F.S. (1998) The Median Procedure on Median Graphs. Discrete Applied Mathematics, 84, 165-181.
http://dx.doi.org/10.1016/S0166-218X(98)00003-1
[18] McMorris, F.R., Roberts, F.S. and Wang, C. (2001) The Center Function on Trees. Networks, 38, 84-87.
http://dx.doi.org/10.1002/net.1027
[19] Mulder, H.M., Pelsmajer, M. and Reid, K.B. (2008) Axiomization of the Center Function on Trees. The Australasian Journal of Combinatorics, 41, 223-226.
[20] Ortega, O. (2008) Concensus and Location: The Mean Function. Ph.D. Disertation, Illinois Institute of Technology, Chicago.
[21] Balakrishnan, K., Changat, M., Mulder, H.H. and Subhamathi, A.R. (2012) Axiomatic Characterization of the Antimedian Function on Paths and Hypercubes. Discrete Mathematics, Algorithms and Applications, 4.
[22] Arrow, K.J., Sen, A.K. and Suzumura, K. (2002) Handbook of Social Choice and Welfare, Volumes 1, North Holland, Amsterdam.
[23] Arrow, K.J., Sen, A.K. and Suzumura, K. (2005) Handbook of Social Choice and Welfare, Volumes 2, North Holland, Amsterdam.
[24] Barthélemy, J.P. and Janowitz, M.F. (1991) A Formal Theory of Consensus. SIAM Journal on Discrete Mathematics, 4, 305-322.
http://dx.doi.org/10.1137/0404028
[25] Day, W.H.E. and McMorris, F.R. (2003) Axiomatic Consensus Theory in Group Choice and Biomathematics. Frontiers in Applied Mathematics, SIAM, Philadelphia.
http://dx.doi.org/10.1137/1.9780898717501
[26] Axiomatic Characterization of Loaction Functions. In: Kaul, H. and Mulder, H., Eds., Advances in Interdisciplinary Applied Discrete Mathematics, Interdisciplinary Mathematical Sciences, Vol. 11 (World Scientific Publishing, Singapure), 2010, 71-91.
[27] Mirchandani, P.B. and Francis, R.L. (1990) Discrete Location Theory. Wiley, New York.

comments powered by Disqus

Copyright © 2014 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.