OJVM> Vol.4 No.7, July 2014

From Culex Exposure to West Nile Virus Infection: Screening of Specific Biomarkers

DownloadDownload as PDF (Size:485KB)  HTML    PP. 145-161  

ABSTRACT

West Nile virus (WNV) is a mosquito-borne flavivirus contributing yearly, to birds, horses and human morbidity and mortality throughout the world. WNV is transmitted mainly by mosquitoes, predominantly by Culex species, to avian hosts and other vertebrates. Since the mid-1990s, WNV outbreaks and severe human cases (i.e., West Nile neuroinvasive disease) have increased throughout the North hemisphere. The absence of human vaccine and effective therapy needs to understand the pathogenesis of WN severe disease as well as factors participating in WNV transmission and mosquito exposure. The exploration of the host/vector interaction at the individual level using host antibody response against mosquito salivary proteins has open news research opportunities aiming to increase the impact of surveillance and WNV vector control strategies. This review describes Culex saliva specific biomarkers as a helpful tool to estimate exposure to vector bites and risk for WNV infection, summarizes recent advances regarding WNV vector control strategies and highlights potential specific biomarkers of WN disease severity.

Cite this paper

Bakli, M. , Fraisier, C. and Almeras, L. (2014) From Culex Exposure to West Nile Virus Infection: Screening of Specific Biomarkers. Open Journal of Veterinary Medicine, 4, 145-161. doi: 10.4236/ojvm.2014.47017.

References

[1] Murphy, F.A., Fauquet, C.M., Bishop, D.H.L., Ghabrial, S.A., Jarvis, A.W., Martelli, G.P. and Mayo, M.A. (1995) Virus Taxonomy: Classification and Nomenclature of Virus. Springer, Berlin, 421 p.
[2] Baqar, S., Hayes, C.G., Murphy, J.R. and Watts, D.M. (1993) Vertical Transmission of West Nile Virus by Culex and Aedes Species Mosquitoes. The American Journal of Tropical Medicine and Hygiene, 48, 757-762.
[3] Campbell, G.L., Marfin, A.A., Lanciotti, R.S. and Gubler, D.J. (2002) West Nile Virus. The Lancet Infectious Diseases, 2, 519-529. S1473309902003687 [pii]
[4] Kauffman, E.B., Franke, M.A., Wong, S.J. and Kramer, L.D. (2011) Detection of West Nile Virus. Methods in Molecular Biology, 665, 383-413. http://dx.doi.org/10.1007/978-1-60761-817-1_21
[5] Sips, G.J., Wilschut, J. and Smit, J.M. (2012) Neuroinvasive Flavivirus Infections. Reviews in Medical Virology, 22, 69-87. http://dx.doi.org/10.1002/rmv.712
[6] May, F.J., Davis, C.T., Tesh, R.B. and Barrett, A.D. (2011) Phylogeography of West Nile Virus, From the Cradle of Evolution in Africa to Eurasia, Australia, and the Americas. Journal of Virology, 85, 2964-2974. JVI.01963-10 [pii]
[7] Tolle, M.A. (2009) Mosquito-Borne Diseases. Current Problems in Pediatric and Adolescent Health Care, 39, 97-140. S1538-5442(09)00014-5 [pii]
[8] Petersen, L.R. and Marfin, A.A. (2002) West Nile Virus: A Primer for the Clinician. Annals of Internal Medicine, 137, 173-179. 200208060-00009 [pii]
[9] Sambri, V., Capobianchi, M., Charrel, R., Fyodorova, M., Gaibani, P., Gould, E., Niedrig, M., Papa, A., Pierro, A., Rossini, G., Varani, S., Vocale, C. and Landini, M.P. (2013) West Nile Virus in Europe: Emergence, Epidemiology, Diagnosis, Treatment, and Prevention. Clinical Microbiology and Infection, 19, 699-704. http://dx.doi.org/10.1111/1469-0691.12211
[10] Rizzo, C., Salcuni, P., Nicoletti, L., Ciufolini, M.G., Russo, F., Masala, R., Frongia, O., Finarelli, A.C., Gramegna, M., Gallo, L., Pompa, M.G., Rezza, G., Salmaso, S. and Declich, S. (2012) Epidemiological Surveillance of West Nile Neuroinvasive Diseases in Italy, 2008 to 2011. Eurosurveillance, 17.
[11] Danis, K., Papa, A., Theocharopoulos, G., Dougas, G., Athanasiou, M., Detsis, M., Baka, A., Lytras, T., Mellou, K., Bonovas, S. and Panagiotopoulos, T. (2011) Outbreak of West Nile Virus Infection in Greece, 2010. Emerging Infectious Diseases, 17, 1868-1872.
http://dx.doi.org/10.3201/eid1710.110525
[12] Lanciotti, R.S., Roehrig, J.T., Deubel, V., Smith, J., Parker, M., Steele, K., Crise, B., Volpe, K.E., Crabtree, M.B., Scherret, J.H., Hall, R.A., MacKenzie, J.S., Cropp, C.B., Panigrahy, B., Ostlund, E., Schmitt, B., Malkinson, M., Banet, C., Weissman, J., Komar, N., Savage, H.M., Stone, W., McNamara, T. and Gubler, D.J. (1999) Origin of the West Nile Virus Responsible for an Outbreak of Encephalitis in the Northeastern United States. Science, 286, 2333-2337. 8110 [pii]
[13] Hayes, E.B., Komar, N., Nasci, R.S., Montgomery, S.P., O’Leary, D.R. and Campbell, G.L. (2005) Epidemiology and Transmission Dynamics of West Nile Virus Disease. Emerging Infectious Diseases, 11, 1167-1173. http://dx.doi.org/10.3201/eid1108.050289a
[14] Kilpatrick, A.M. (2011) Globalization, Land Use, and the Invasion of West Nile Virus. Science, 334, 323-327. 334/6054/323 [pii]
[15] Petersen, L.R. and Hayes, E.B. (2008) West Nile Virus in the Americas. Medical Clinics of North America, 92, 1307-1322, ix. http://dx.doi.org/10.1016/j.mcna.2008.07.004
[16] Fredericksen, B.L. (2013) The Neuroimmune Response to West Nile Virus. Journal of NeuroVirology, 20, 113-121.
[17] Suthar, M.S., Diamond, M.S. and Gale, Jr., M. (2013) West Nile Virus Infection and Immunity. Nature Reviews Microbiology, 11, 115-128. nrmicro2950 [pii]
[18] DeFilette, M. (2012) Recent Progress in West Nile Virus Diagnosis and Vaccination. Veterinary Research, 43, 16.
[19] Winters, A.M., Eisen, R.J., Lozano-Fuentes, S., Moore, C.G., Pape, W.J. and Eisen, L. (2008) Predictive Spatial Models for Risk of West Nile Virus Exposure in Eastern and Western Colorado. The American Journal of Tropical Medicine and Hygiene, 79, 581-590. 79/4/581 [pii]
[20] Medlock, J.M., Hansford, K.M., Schaffner, F., Versteirt, V., Hendrickx, G., Zeller, H. and Van, B.W. (2012) A Review of the Invasive Mosquitoes in Europe: Ecology, Public Health Risks, and Control Options. Vector-Borne and Zoonotic Diseases, 12, 435-447.
http://dx.doi.org/10.1089/vbz.2011.0814
[21] Billingsley, P.F., Baird, J., Mitchell, J.A. and Drakeley, C. (2006) Immune Interactions between Mosquitoes and Their Hosts. Parasite Immunology, 28, 143-153. PIM805 [pii]
[22] Reagan, K.L., Machain-Williams, C., Wang, T. and Blair, C.D. (2012) Immunization of Mice with Recombinant Mosquito Salivary Protein D7 Enhances Mortality from Subsequent West Nile Virus Infection via Mosquito Bite. PLOS Neglected Tropical Diseases, 6, Article ID: e1935. PNTD-D-12-00770 [pii]
[23] Machain-Williams, C., Reagan, K., Wang, T., Zeidner, N.S. and Blair, C.D. (2013) Immunization with Culex Tarsalis Mosquito Salivary Gland Extract Modulates West Nile Virus Infection and Disease in Mice. Viral Immunology, 26, 84-92. http://dx.doi.org/10.1089/vim.2012.0051
[24] Poinsignon, A., Remoue, F., Rossignol, M., Cornelie, S., Courtin, D., Grebaut, P., Garcia, A. and Simondon, F. (2008) Human IgG Antibody Response to Glossina Saliva: An Epidemiologic Marker of Exposure to Glossina Bites. The American Journal of Tropical Medicine and Hygiene, 78, 750-753. 78/5/750 [pii]
[25] Andrade, B.B. and Teixeira, C.R. (2012) Biomarkers for Exposure to Sand Flies Bites as Tools to Aid Control of Leishmaniasis. Frontiers in Immunology, 3, 121.
http://dx.doi.org/10.3389/fimmu.2012.00121
[26] Cornelie, S., Remoue, F., Doucoure, S., Ndiaye, T., Sauvage, F.X., Boulanger, D. and Simondon, F. (2007) An Insight into Immunogenic Salivary Proteins of Anopheles gambiae in African Children. Malaria Journal, 6, 75. 1475-2875-6-75 [pii]
[27] Nascimento, R.J., Santana, J.M., Lozzi, S.P., Araujo, C.N. and Teixeira, A.R. (2001) Human IgG1 and IgG4: The Main Antibodies against Triatoma infestans (Hemiptera: Reduviidae) Salivary Gland Proteins. The American Journal of Tropical Medicine and Hygiene, 65, 219-226.
[28] Palosuo, K., Brummer-Korvenkontio, H., Mikkola, J., Sahi, T. and Reunala, T. (1997) Seasonal Increase in Human IgE and IgG4 Antisaliva Antibodies to Aedes Mosquito Bites. International Archives of Allergy and Immunology, 114, 367-372. http://dx.doi.org/10.1159/000237696
[29] Vu, H.V., Pages, F., Boulanger, N., Audebert, S., Parola, P. and Almeras, L. (2013) Immunoproteomic Identification of Antigenic Salivary Biomarkers Detected by Ixodes Ricinus-Exposed Rabbit Sera. Ticks and Tick-Borne Diseases, 4, 459-468. S1877-959X(13)00060-5 [pii]
[30] Fontaine, A. (2011) Relationship between Exposure to Vector Bites and Antibody Responses to Mosquito Salivary Gland Extracts. PLOS One, 6, Article ID: e29107.
[31] Remoue, F., Alix, E., Cornelie, S., Sokhna, C., Cisse, B., Doucoure, S., Mouchet, F., Boulanger, D. and Simondon, F. (2007) IgE and IgG4 Antibody Responses to Aedes Saliva in African Children. Acta Tropica, 104, 108-115.
[32] Sanchini, A., Donoso-Mantke, O., Papa, A., Sambri, V., Teichmann, A. and Niedrig, M. (2013) Second International Diagnostic Accuracy Study for the Serological Detection of West Nile Virus Infection. PLoS Neglected Tropical Diseases, 7, Article ID: e2184.
[33] Gubler, D.J. (2007) The Continuing Spread of West Nile Virus in the Western Hemisphere. Clinical Infectious Diseases, 45, 1039-1046. CID51212 [pii]
[34] Medlock, J.M., Snow, K.R. and Leach, S. (2005) Potential Transmission of West Nile Virus in the British Isles: An Ecological Review of Candidate Mosquito Bridge Vectors. Medical and Veterinary Entomology, 19, 2-21. MVE547 [pii]
[35] Turell, M.J., Dohm, D.J., Sardelis, M.R., Oguinn, M.L., Andreadis, T.G. and Blow, J.A. (2005) An Update on the Potential of North American Mosquitoes (Diptera: Culicidae) to Transmit West Nile Virus. Journal of Medical Entomology, 42, 57-62.
http://dx.doi.org/10.1603/0022-2585(2005)042[0057:AUOTPO]2.0.CO;2
[36] Pesko, K. and Mores, C.N. (2009) Effect of Sequential Exposure on Infection and Dissemination Rates for West Nile and St. Louis Encephalitis Viruses in Culex quinquefasciatus. Vector-Borne and Zoonotic Diseases, 9, 281-286. http://dx.doi.org/10.1089/vbz.2007.0281
[37] Turell, M.J., Presley, S.M., Gad, A.M., Cope, S.E., Dohm, D.J., Morrill, J.C. and Arthur, R.R. (1996) Vector Competence of Egyptian Mosquitoes for Rift Valley Fever Virus. American Journal of Tropical Medicine and Hygiene, 54, 136-139.
[38] Weng, M.H., Lien, J.C., Lin, C.C. and Yao, C.W. (2000) Vector Competence of Culex pipiens Molestus (Diptera: Culicidae) from Taiwan for a Sympatric Strain of Japanese Encephalitis Virus. Journal of Medical Entomology, 37, 780-783. http://dx.doi.org/10.1603/0022-2585-37.5.780
[39] Steele, K.E. and Twenhafel, N.A. (2010) REVIEW PAPER: Pathology of Animal Models of Alphavirus Encephalitis. Veterinary Pathology, 47, 790-805. 0300985810372508 [pii]
[40] Farajollahi, A., Fonseca, D.M., Kramer, L.D. and Marm, K.A. (2011) “Bird Biting” Mosquitoes and Human Disease: A Review of the Role of Culex pipiens Complex Mosquitoes in Epidemiology. Infection, Genetics and Evolution, 11, 1577-1585. S1567-1348(11)00292-9 [pii]
[41] Trevejo, R.T. and Eidson, M. (2008) Zoonosis Update: West Nile Virus. Journal of the American Veterinary Medical Association, 232, 1302-1309. http://dx.doi.org/10.2460/javma.232.9.1302
[42] Artsob, H., Gubler, D.J., Enria, D.A., Morales, M.A., Pupo, M., Bunning, M.L. and Dudley, J.P. (2009) West Nile Virus in the New World: Trends in the Spread and Proliferation of West Nile Virus in the Western Hemisphere. Zoonoses and Public Health, 56, 357-369. JVB1207 [pii]
[43] Brownstein, J.S., Holford, T.R. and Fish, D. (2004) Enhancing West Nile Virus Surveillance, United States. Emerging Infectious Diseases, 10, 1129-1133.
[44] Kramer, L.D., Styer, L.M. and Ebel, G.D. (2008) A Global Perspective on the Epidemiology of West Nile Virus. Annual Review of Entomology, 53, 61-81.
http://dx.doi.org/10.1146/annurev.ento.53.103106.093258
[45] Mergl, R. (2010) Transmission of West Nile Virus in the Niagara Region among a Population at Risk for Exposure. Dissertation, Faculty of Applied Health Sciences Brock University St Catharines, Ontario.
[46] Rockx, B., van Asten, L., van den Wijngaard, C., Godeke, G.J., Goehring, L., Vennema, H., van der Avoort, H., van Pelt, W. and Koopmans, M. (2006) Syndromic Surveillance in the Netherlands for the Early Detection of West Nile Virus Epidemics. Vector-Borne and Zoonotic Diseases, 6, 161-169. http://dx.doi.org/10.1089/vbz.2006.6.161
[47] Petersen, L.R. and Fischer, M. (2012) Unpredictable and Difficult to Control—The Adolescence of West Nile Virus. New England Journal of Medicine, 367, 1281-1284.
http://dx.doi.org/10.1056/NEJMp1210537
[48] Eidson, M., Komar, N., Sorhage, F., Nelson, R., Talbot, T., Mostashari, F. and McLean, R. (2001) Crow Deaths as a Sentinel Surveillance System for West Nile Virus in the Northeastern United States, 1999. Emerging Infectious Diseases, 7, 615-620. http://dx.doi.org/10.3201/eid0704.010402
[49] Guptill, S.C., Julian, K.G., Campbell, G.L., Price, S.D. and Marfin, A.A. (2003) Early-Season Avian Deaths from West Nile Virus as Warnings of Human Infection. Emerging Infectious Diseases, 9, 483-484. http://dx.doi.org/10.3201/eid0904.020421
[50] Roberts, R.S. and Foppa, I.M. (2006) Prediction of Equine Risk of West Nile Virus Infection Based on Dead Bird Surveillance. Vector-Borne and Zoonotic Diseases, 6, 1-6.
http://dx.doi.org/10.1089/vbz.2006.6.1
[51] Mostashari, F., Kulldorff, M., Hartman, J.J., Miller, J.R. and Kulasekera, V. (2003) Dead Bird Clusters as an Early Warning System for West Nile Virus Activity. Emerging Infectious Diseases, 9, 641-646. http://dx.doi.org/10.3201/eid0906.020794
[52] Castillo-Olivares, J. and Wood, J. (2004) West Nile Virus Infection of Horses. Veterinary Research, 35, 467-483. V4014 [pii]
[53] Barros, S.C., Ramos, F., Fagulha, T., Duarte, M., Henriques, M., Luis, T. and Fevereiro, M. (2011) Serological Evidence of West Nile Virus Circulation in Portugal. Veterinary Microbiology, 152, 407-410. S0378-1135(11)00277-X [pii]
[54] Kesavaraju, B., Kiyoguchi, D. and Dickson, S. (2011) Efficacy of Gravid Traps in Trapping Culex pipiens. Journal of the American Mosquito Control Association, 27, 320-322.
http://dx.doi.org/10.2987/11-6136.1
[55] Kline, D.L. (2006) Traps and Trapping Techniques for Adult Mosquito Control. Journal of the American Mosquito Control Association, 22, 490-496.
http://dx.doi.org/10.2987/8756-971X(2006)22[490:TATTFA]2.0.CO;2
[56] Curtis, C. (2005) Insecticide-Treated Nets against Malaria Vectors and Polystyrene Beads against Culex larvae. Trends in Parasitology, 21, 504-507. S1471-4922(05)00252-7 [pii]
[57] Nkya, T.E., Akhouayri, I., Kisinza, W. and David, J.P. (2013) Impact of Environment on Mosquito Response to Pyrethroid Insecticides: Facts, Evidences and Prospects. Insect Biochemistry and Molecular Biology, 43, 407-416. S0965-1748(12)00147-6 [pii]
[58] Briet, O.J., Penny, M.A., Hardy, D., Awolola, T.S., Van, B.W., Corbel, V., Dabire, R.K., Etang, J., Koudou, B.G., Tungu, P.K. and Chitnis, N. (2013) Effects of Pyrethroid Resistance on the Cost Effectiveness of a Mass Distribution of Long-Lasting Insecticidal Nets: A Modelling Study. Malaria Journal, 12, 77. 1475-2875-12-77 [pii]
[59] Labbe, P., Berthomieu, A., Berticat, C., Alout, H., Raymond, M., Lenormand, T. and Weill, M. (2007) Independent Duplications of the Acetylcholinesterase Gene Conferring Insecticide Resistance in the Mosquito Culex pipiens. Molecular Biology and Evolution, 24, 1056-1067. msm025 [pii]
[60] Liu, Y., Zhang, H., Qiao, C., Lu, X. and Cui, F. (2011) Correlation between Carboxylesterase Alleles and Insecticide Resistance in Culex pipiens Complex from China. Parasites & Vectors, 4, 236. 1756-3305-4-236 [pii]
[61] Osta, M.A., Rizk, Z.J., Labbe, P., Weill, M. and Knio, K. (2012) Insecticide Resistance to Organophosphates in Culex pipiens Complex from Lebanon. Parasites & Vectors, 5, 132. 1756-3305-5-132 [pii]
[62] Djegbe, I., Cornelie, S., Rossignol, M., Demettre, E., Seveno, M., Remoue, F. and Corbel, V. (2011) Differential Expression of Salivary Proteins between Susceptible and Insecticide-Resistant Mosquitoes of Culex quinquefasciatus. PLoS ONE, 6, Article ID: e17496.
http://dx.doi.org/10.1371/journal.pone.0017496
[63] Park, H.W., Bideshi, D.K., Wirth, M.C., Johnson, J.J., Walton, W.E. and Federici, B.A. (2005) Recombinant Larvicidal Bacteria with Markedly Improved Efficacy against Culex Vectors of West Nile Virus. American Journal of Tropical Medicine and Hygiene, 72, 732-738. 72/6/732 [pii]
[64] Becnel, J.J. (2006) Prospects for the Mosquito Baculovirus CuniNPV as a Tool for Mosquito Control. Journal of the American Mosquito Control Association, 22, 523-526. http://dx.doi.org/10.2987/8756-971X(2006)22[523:PFTMBC]2.0.CO;2
[65] McGraw, E.A. and O’Neill, S.L. (2013) Beyond Insecticides: New Thinking on an Ancient Problem. Nature Reviews Microbiology, 11, 181-193. nrmicro2968 [pii]
[66] Hoffmann, A.A., Montgomery, B.L., Popovici, J., Iturbe-Ormaetxe, I., Johnson, P.H., Muzzi, F., Greenfield, M., Durkan, M., Leong, Y.S., Dong, Y., Cook, H., Axford, J., Callahan, A.G., Kenny, N., Omodei, C., McGraw, E.A., Ryan, P.A., Ritchie, S.A., Turelli, M. and O’Neill, S.L. (2011) Successful Establishment of Wolbachia in Aedes Populations to Suppress Dengue Transmission. Nature, 476, 454-457. nature10356 [pii]
[67] McMeniman, C.J., Lane, R.V., Cass, B.N., Fong, A.W., Sidhu, M., Wang, Y.F. and O’Neill, S.L. (2009) Stable Introduction of a Life-Shortening Wolbachia Infection into the Mosquito Aedes aegypti. Science, 323, 141-144. 323/5910/141 [pii]
[68] Glaser, R.L. and Meola, M.A. (2010) The Native Wolbachia Endosymbionts of Drosophila melanogaster and Culex quinquefasciatus Increase Host Resistance to West Nile Virus Infection. PLoS ONE, 5, Article ID: e11977.
[69] Dodson, B.L., Kramer, L.D. and Rasgon, J.L. (2011) Larval Nutritional Stress Does Not Affect Vector Competence for West Nile Virus (WNV) in Culex tarsalis. Vector-Borne and Zoonotic Diseases, 11, 1493-1497. http://dx.doi.org/10.1089/vbz.2011.0662
[70] Michaelakis, A., Strongilos, A.T., Bouzas, E.A., Koliopoulos, G. and Couladouros, E.A. (2009) Larvicidal Activity of Naturally Occurring Naphthoquinones and Derivatives against the West Nile Virus Vector Culex pipiens. Parasitology Research, 104, 657-662. http://dx.doi.org/10.1007/s00436-008-1242-7
[71] LaBeaud, A.D., Bashir, F. and King, C.H. (2011) Measuring the Burden of Arboviral Diseases: The Spectrum of Morbidity and Mortality from Four Prevalent Infections. Population Health Metrics, 9, 1. 1478-7954-9-1 [pii]
[72] Kilpatrick, A.M., Kramer, L.D., Campbell, S.R., Alleyne, E.O., Dobson, A.P. and Daszak, P. (2005) West Nile Virus Risk Assessment and the Bridge Vector Paradigm. Emerging Infectious Diseases, 11, 425-429. http://dx.doi.org/10.3201/eid1103.040364
[73] Fontaine, A., Diouf, I., Bakkali, N., Misse, D., Pages, F., Fusai, T., Rogier, C. and Almeras, L. (2011) Implication of Haematophagous Arthropod Salivary Proteins in Host-Vector Interactions. Parasites & Vectors, 4, 187. 1756-3305-4-187 [pii]
[74] Ribeiro, J.M. and Francischetti, I.M. (2003) Role of Arthropod Saliva in Blood Feeding: Sialome and Post-Sialome Perspectives. Annual Review of Entomology, 48, 73-88. 060402.102812 [pii]
[75] Ribeiro, J.M. (1989) Vector Saliva and Its Role in Parasite Transmission. Experimental Parasitology, 69, 104-106. http://dx.doi.org/10.1016/0014-4894(89)90177-X
[76] Andrade, B.B., Teixeira, C.R., Barral, A. and Barral-Netto, M. (2005) Haematophagous Arthropod Saliva and Host Defense System: A Tale of Tear and Blood. Anais da Academia Brasileira de Ciências, 77, 665-693. S0001-37652005000400008 [pii]
[77] Francischetti, I.M., Sa-Nunes, A., Mans, B.J., Santos, I.M. and Ribeiro, J.M. (2009) The Role of Saliva in Tick Feeding. Frontiers in Bioscience, 14, 2051-2088. 3363 [pii]
[78] Titus, R.G., Bishop, J.V. and Mejia, J.S. (2006) The Immunomodulatory Factors of Arthropod Saliva and the Potential for These Factors to Serve as Vaccine Targets to Prevent Pathogen Transmission. Parasite Immunology, 28, 131-141. pim807 [pii]
[79] Orlandi-Pradines, E., Almeras, L., Denis de, S.L., Barbe, S., Remoue, F., Villard, C., Cornelie, S., Penhoat, K., Pascual, A., Bourgouin, C., Fontenille, D., Bonnet, J., Corre-Catelin, N., Reiter, P., Pages, F., Laffite, D., Boulanger, D., Simondon, F., Pradines, B., Fusai, T. and Rogier, C. (2007) Antibody Response against Saliva Antigens of Anopheles gambiae and Aedes aegypti in Travellers in Tropical Africa. Microbes and Infection, 9, 1454-1462. S1286-4579(07)00269-9 [pii]
[80] Remoue, F., Cisse, B., Ba, F., Sokhna, C., Herve, J.P., Boulanger, D. and Simondon, F. (2006) Evaluation of the Antibody Response to Anopheles Salivary Antigens as a Potential Marker of Risk of Malaria. Transactions of the Royal Society of Tropical Medicine and Hygiene, 100, 363-370. S0035-9203(05)00288-9 [pii]
[81] Das, M.K., Mishra, A., Beuria, M.K. and Dash, A.P. (1991) Human Natural Antibodies to Culex quinquefasciatus: Age-Dependent Occurrence. Journal of the American Mosquito Control Association, 7, 319-321.
[82] Malafronte, R.S., Calvo, E., James, A.A. and Marinotti, O. (2003) The Major Salivary Gland Antigens of Culex quinquefasciatus Are D7-Related Proteins. Insect Biochemistry and Molecular Biology, 33, 63-71.
[83] Wanasen, N., Nussenzveig, R.H., Champagne, D.E., Soong, L. and Higgs, S. (2004) Differential Modulation of Murine Host Immune Response by Salivary Gland Extracts from the Mosquitoes Aedes aegypti and Culex quinquefasciatus. Medical and Veterinary Entomology, 18, 191-199. MVE498 [pii]
[84] Wongkamchai, S., Khongtak, P., Leemingsawat, S., Komalamisra, N., Junsong, N., Kulthanan, K., Wisuthsarewong, W. and Boitano, J.J. (2010) Comparative Identification of Protein Profiles and Major Allergens of Saliva, Salivary Gland and Whole Body Extracts of Mosquito Species in Thailand. Asian Pacific Journal of Allergy and Immunology, 28, 162-169.
[85] Asada, H., Saito-Katsuragi, M., Niizeki, H., Yoshioka, A., Suguri, S., Isonokami, M., Aoki, T., Ishihara, S., Tokura, Y., Iwatsuki, K. and Miyagawa, S. (2005) Mosquito Salivary Gland Extracts Induce EBV-Infected NK Cell Oncogenesis via CD4 T Cells in Patients with Hypersensitivity to Mosquito Bites. Journal of Investigative Dermatology, 125, 956-961. JID23915 [pii]
[86] Asada H. (2007) Hypersensitivity to Mosquito Bites: A Unique Pathogenic Mechanism Linking Epstein-Barr Virus Infection, Allergy and Oncogenesis. Journal of Dermatological Science, 45, 153-160.
[87] Ramakrishnan, C., Rademacher, A., Soichot, J., Costa, G., Waters, A.P., Janse, C.J., Ramesar, J., Franke-Fayard, B.M. and Levashina, E.A. (2012) Salivary Gland-Specific P. berghei Reporter LINES Enable Rapid Evaluation of Tissue-Specific Sporozoite Loads in Mosquitoes, PLoS One, 7, Article ID: e36376.
[88] Fontaine, A., Fusai, T., Briolant, S., Buffet, S., Villard, C., Baudelet, E., Pophillat, M., Granjeaud, S., Rogier, C. and Almeras, L. (2012) Anopheles Salivary Gland Proteomes from Major Malaria Vectors. BMC Genomics, 13, 614. 1471-2164-13-614 [pii]
[89] Ali, Z.M., Bakli, M., Fontaine, A., Bakkali, N., Hai, V.V., Audebert, S., Boublik, Y., Pages, F., Remoue, F., Rogier, C., Fraisier, C. and Almeras, L. (2012) Assessment of Anopheles Salivary Antigens as Individual Exposure Biomarkers to Species-Specific Malaria Vector Bites. Malaria Journal, 11, 439. 1475-2875-11-439 [pii]
[90] Sagna, A.B., Sarr, J.B., Gaayeb, L., Drame, P.M., Ndiath, M.O., Senghor, S., Sow, C.S., Poinsignon, A., Seck, M., Hermann, E., Schacht, A.M., Faye, N., Sokhna, C., Remoue, F. and Riveau, G. (2013) gSG6-P1 Salivary Biomarker Discriminates Micro-Geographical Heterogeneity of Human Exposure to Anopheles Bites in Low and Seasonal Malaria Areas. Parasites & Vectors, 6, 68. 1756-3305-6-68 [pii]
[91] Drame, P.M., Machault, V., Diallo, A., Cornelie, S., Poinsignon, A., Lalou, R., Sembene, M., Dos, S.S., Rogier, C., Pages, F., Le Hesran, J.Y. and Remoue, F. (2012) IgG Responses to the gSG6-P1 Salivary Peptide for Evaluating Human Exposure to Anopheles Bites in Urban Areas of Dakar Region, Senegal. Malaria Journal, 11, 72. 1475-2875-11-72 [pii]
[92] Rizzo, C., Ronca, R., Fiorentino, G., Verra, F., Mangano, V., Poinsignon, A., Sirima, S.B., Nebie, I., Lombardo, F., Remoue, F., Coluzzi, M., Petrarca, V., Modiano, D. and Arca, B. (2011) Humoral Response to the Anopheles gambiae Salivary Protein gSG6: A Serological Indicator of Exposure to Afrotropical Malaria Vectors. PLoS ONE, 6, Article ID: e17980.
http://dx.doi.org/10.1371/journal.pone.0017980
[93] Drame, P.M., Poinsignon, A., Besnard, P., Cornelie, S., Le, M.J., Toto, J.C., Foumane, V., Dos-Santos, M.A., Sembene, M., Fortes, F., Simondon, F., Carnevale, P. and Remoue, F. (2010) Human Antibody Responses to the Anopheles Salivary gSG6-P1 Peptide: A Novel Tool for Evaluating the Efficacy of ITNs in Malaria Vector Control. PLoS ONE, 5, Article ID: e15596.
http://dx.doi.org/10.1371/journal.pone.0015596
[94] Poinsignon, A., Samb, B., Doucoure, S., Drame, P.M., Sarr, J.B., Sow, C., Cornelie, S., Maiga, S., Thiam, C., Rogerie, F., Guindo, S., Hermann, E., Simondon, F., Dia, I., Riveau, G., Konate, L. and Remoue, F. (2010) First Attempt to Validate the gSG6-P1 Salivary Peptide as an Immuno-Epidemiological Tool for Evaluating Human Exposure to Anopheles Funestus Bites. Tropical Medicine & International Health, 15, 1198-1203. TMI2611 [pii]
[95] Drame, P.M., Poinsignon, A., Besnard, P., Le, M.J., Dos-Santos, M.A., Sow, C.S., Cornelie, S., Foumane, V., Toto, J.C., Sembene, M., Boulanger, D., Simondon, F., Fortes, F., Carnevale, P. and Remoue, F. (2010) Human Antibody Response to Anopheles gambiae Saliva: An Immuno-Epidemiological Biomarker to Evaluate the Efficacy of Insecticide-Treated Nets in Malaria Vector Control. American Journal of Tropical Medicine and Hygiene, 83, 115-121. 83/1/115 [pii]
[96] Poinsignon, A., Cornelie, S., Ba, F., Boulanger, D., Sow, C., Rossignol, M., Sokhna, C., Cisse, B., Simondon, F. and Remoue, F. (2009) Human IgG Response to a Salivary Peptide, gSG6-P1, as a New Immuno-Epidemiological Tool for Evaluating Low-Level Exposure to Anopheles Bites. Malaria Journal, 8, 198. 1475-2875-8-198 [pii]
[97] Poinsignon, A., Cornelie, S., Mestres-Simon, M., Lanfrancotti, A., Rossignol, M., Boulanger, D., Cisse, B., Sokhna, C., Arca, B., Simondon, F. and Remoue, F. (2008) Novel Peptide Marker Corresponding to Salivary Protein gSG6 Potentially Identifies Exposure to Anopheles Bites. PLoS ONE, 3, Article ID: e2472. http://dx.doi.org/10.1371/journal.pone.0002472
[98] Arensburger, P., Megy, K., Waterhouse, R.M., Abrudan, J., Amedeo, P., Antelo, B., Bartholomay, L., Bidwell, S., Caler, E., Camara, F., Campbell, C.L., Campbell, K.S., Casola, C., Castro, M.T., Chandramouliswaran, I., Chapman, S.B., Christley, S., Costas, J., Eisenstadt, E., Feschotte, C., Fraser-Liggett, C., Guigo, R., Haas, B., Hammond, M., Hansson, B.S., Hemingway, J., Hill, S.R., Howarth, C., Ignell, R., Kennedy, R.C., Kodira, C.D., Lobo, N.F., Mao, C., Mayhew, G., Michel, K., Mori, A., Liu, N., Naveira, H., Nene, V., Nguyen, N., Pearson, M.D., Pritham, E.J., Puiu, D., Qi, Y., Ranson, H., Ribeiro, J.M., Roberston, H.M., Severson, D.W., Shumway, M., Stanke, M., Strausberg, R.L., Sun, C., Sutton, G., Tu, Z.J., Tubio, J.M., Unger, M.F., Vanlandingham, D.L., Vilella, A.J., White, O., White, J.R., Wondji, C.S., Wortman, J., Zdobnov, E.M., Birren, B., Christensen, B.M., Collins, F.H., Cornel, A., Dimopoulos, G., Hannick, L.I., Higgs, S., Lanzaro, G.C., Lawson, D., Lee, N.H., Muskavitch, M.A., Raikhel, A.S. and Atkinson, P.W. (2010) Sequencing of Culex quinquefasciatus Establishes a Platform for Mosquito Comparative Genomics. Science, 330, 86-88. 330/6000/86 [pii]
[99] Ribeiro, J.M., Charlab, R., Pham, V.M., Garfield, M. and Valenzuela, J.G. (2004) An Insight into the Salivary Transcriptome and Proteome of the Adult Female Mosquito Culex pipiens Quinquefasciatus. Insect Biochemistry and Molecular Biology, 34, 543-563. S0965174804000323 [pii]
[100] Calvo, E., Sanchez-Vargas, I., Favreau, A.J., Barbian, K.D., Pham, V.M., Olson, K.E. and Ribeiro, J.M. (2010) An Insight into the Sialotranscriptome of the West Nile Mosquito Vector, Culex tarsalis. BMC Genomics, 11, 51. 1471-2164-11-51 [pii]
[101] Arca, B., Lombardo, F., Francischetti, I.M., Pham, V.M., Mestres-Simon, M., Andersen, J.F. and Ribeiro, J.M. (2007) An Insight into the Sialome of the Adult Female Mosquito Aedes albopictus. Insect Biochemistry and Molecular Biology, 37, 107-127. S0965-1748(06)00219-0 [pii]
[102] Ribeiro, J.M., Arca, B., Lombardo, F., Calvo, E., Phan, V.M., Chandra, P.K. and Wikel, S.K. (2007) An Annotated Catalogue of Salivary Gland Transcripts in the Adult Female Mosquito, Aedes aegypti. BMC Genomics, 8, 6. 1471-2164-8-6 [pii]
[103] Reagan, K.L. (2010) Identification of Culex tarsalis D7 Salivary Protein and Role of Salivary Protein Vaccine on Subsequent West Nile Virus Infection. Colorado State University Libraries, Fort Collins, 134 p.
[104] Ribeiro, J.M.C. and Arcà, B. (2009) From Sialomes to the Sialoverse: An Insight into the Salivary Potion of Blood Feeding Insects. Advances in Insect Physiology, 37, 59-118.
[105] Osorio, J.E., Godsey, M.S., Defoliart, G.R. and Yuill, T.M. (1996) La Crosse Viremias in White-Tailed Deer and Chipmunks Exposed by Injection or Mosquito Bite. American Journal of Tropical Medicine and Hygiene, 54, 338-342.
[106] Vaughan, J.A., Scheller, L.F., Wirtz, R.A. and Azad, A.F. (1999) Infectivity of Plasmodium Berghei Sporozoites Delivered by Intravenous Inoculation versus Mosquito Bite: Implications for Sporozoite Vaccine Trials. Infection and Immunity, 67, 4285-4289.
[107] Limesand, K.H., Higgs, S., Pearson, L.D. and Beaty, B.J. (2000) Potentiation of Vesicular Stomatitis New Jersey Virus Infection in Mice by Mosquito Saliva. Parasite Immunology, 22, 461-467.
[108] Gillan, V. and Devaney, E. (2004) Mosquito Transmission Modulates the Immune Response in Mice Infected with the L3 of Brugia pahangi. Parasite Immunology, 26, 359-363.
[109] Donovan, M.J., Messmore, A.S., Scrafford, D.A., Sacks, D.L., Kamhawi, S. and Ann McDowell, M. (2007) Uninfected Mosquito Bites Confer Protection against Infection with Malaria Parasites. Infection and Immunity, 75, 2523-2530.
[110] Styer, L.M., Lim, P.Y., Louie, K.L., Albright, R.G., Kramer, L.D. and Bernard, K.A. (2011) Mosquito Saliva Causes Enhancement of West Nile Virus Infection in Mice. Journal of Virology, 85, 1517-1527. JVI.01112-10 [pii]
[111] Schneider, B.S., McGee, C.E., Jordan, J.M., Stevenson, H.L., Soong, L. and Higgs, S. (2007) Prior Exposure to Uninfected Mosquitoes Enhances Mortality in Naturally-Transmitted West Nile Virus Infection. PLoS ONE, 2, Article ID: e1171. http://dx.doi.org/10.1371/journal.pone.0001171
[112] Schneider, B.S., Soong, L., Stevenson, H.L., McGee, C.E. and Higgs, S. (2010) Aedes aegypti Saliva Alters Leukocyte Recruitment and Cytokine Signaling by Antigen-Presenting Cells during West Nile Virus Infection. PLoS ONE, 5, Article ID: e11704.
[113] Styer, L.M., Bernard, K.A. and Kramer, L.D. (2006) Enhanced Early West Nile Virus Infection in Young Chickens Infected by Mosquito Bite: Effect of Viral Dose. American Journal of Tropical Medicine and Hygiene, 75, 337-345. 75/2/337 [pii]
[114] Schneider, B.S., Soong, L., Girard, Y.A., Campbell, G., Mason, P. and Higgs, S. (2006) Potentiation of West Nile Encephalitis by Mosquito Feeding. Viral Immunology, 19, 74-82.
http://dx.doi.org/10.1089/vim.2006.19.74
[115] Schneider, B.S. and Higgs, S. (2008) The Enhancement of Arbovirus Transmission and Disease by Mosquito Saliva Is Associated with Modulation of the Host Immune Response. Transactions of the Royal Society of Tropical Medicine and Hygiene, 102, 400-408. S0035-9203(08)00053-9 [pii]
[116] Diamond, M.S. (2009) West Nile Encephalitis Virus Infection: Viral Pathogenesis and the Host Immune Response. Springer Science & Business Media, Berlin, 504 p.
[117] Mans, B.J. and Francischetti, I.M.B. (2011) Sialomic Perspectives on the Evolution of Blood-Feeding Behavior in Arthropods: Future Therapeutics by Natural Design. In: Toxins and Hemostasis, Springer Science + Business Media, New York, 21-44.
[118] Morris, R.V., Shoemaker, C.B., David, J.R., Lanzaro, G.C. and Titus, R.G. (2001) Sandfly Maxadilan Exacerbates Infection with Leishmania major and Vaccinating against It Protects against L. major Infection. Journal of Immunology, 167, 5226-5230. http://dx.doi.org/10.4049/jimmunol.167.9.5226
[119] Koo, Q.Y., Khan, A.M., Ramdas, S., Miotto, O., Wee Tan, T., Jung, K.O., Salmon, J. and August, J.T. (2009) Conservation and Variability of West Nile Virus Proteins. PLoS ONE, 4, Article ID: e5352.
[120] Colpitts, T.M., Conway, M.J., Montgomery, R.R. and Fikrig, E. (2012) West Nile Virus: Biology, Transmission, and Human Infection. Clinical Microbiology Reviews, 25, 635-648. 25/4/635 [pii]
[121] Gubler, D.J. (2002) The Global Emergence/Resurgence of Arboviral Diseases as Public Health Problems. Archives of Medical Research, 33, 330-342. S0188-4409(02)00378-8 [pii]
[122] Shi, P.Y. and Wong, S.J. (2003) Serologic Diagnosis of West Nile Virus Infection. Expert Review of Molecular Diagnostics, 3, 733-741. ERM030606 [pii]
[123] Rossi, S.L., Ross, T.M. and Evans, J.D. (2010) West Nile Virus. Clinics in Laboratory Medicine, 30, 47-65.
[124] Kalil, A.C., Devetten, M.P., Singh, S., Lesiak, B., Poage, D.P., Bargenquast, K., Fayad, P. and Freifeld, A.G. (2005) Use of Interferon-Alpha in Patients with West Nile Encephalitis: Report of 2 Cases. Clinical Infectious Diseases, 40, 764-766.
[125] Lewis, M. and Amsden, J.R. (2007) Successful Treatment of West Nile Virus Infection after Approximately 3 Weeks into the Disease Course. Pharmacotherapy, 27, 455-458.
[126] Loginova, S.I., Borisevich, S.V., Pashchenko, Iu.A. and Bondarev, V.P. (2009) Ribavirin Prophylaxis and Therapy of Experimental West Nile Fever. Antibiotiki i Khimioterapiia, 54, 17-20.
[127] Shimoni, Z., Niven, M.J., Pitlick, S. and Bulvik, S. (2001) Treatment of West Nile Virus Encephalitis with Intravenous Immunoglobulin. Emerging Infectious Diseases, 7.
[128] Petersen, L.R. (2008) Clinical Manifestations, Diagnosis, and Treatment of West Nile Virus Infection. In: Rose, B., Ed., UpToDate. UpToDate, Waltham.
[129] Dhingra, V., Li, Q., Allison, A.B., Stallknecht, D.E. and Fu, Z.F. (2005) Proteomic Profiling and Neurodegeneration in West-Nile-Virus-Infected Neurons. Journal of Biomedicine & Biotechnology, 2005, 271-279.
[130] Fredericksen, B.L., Smith, M., Katze, M.G., Shi, P.Y. and Gale Jr., M. (2004) The Host Response to West Nile Virus Infection Limits Viral Spread through the Activation of the Interferon Regulatory Factor 3 Pathway. Journal of Virology, 78, 7743-7747.
[131] Loeb, M., Eskandarian, S., Rupp, M., Fishman, N., Gasink, L., Patterson, J., Bramson, J., Hudson, T.J. and Lemire, M. (2011) Genetic Variants and Susceptibility to Neurological Complications Following West Nile Virus Infection. Journal of Infectious Diseases, 204, 1031-1037.
[132] Pastorino, B., Boucomont-Chapeaublanc, E., Peyrefitte, C.N., Belghazi, M., Fusai, T., Rogier, C., Tolou, H.J. and Almeras, L. (2009) Identification of Cellular Proteome Modifications in Response to West Nile Virus Infection. Molecular & Cellular Proteomics, 8, 1623-1637.
[133] Venter, M., Myers, T.G., Wilson, M.A., Kindt, T.J., Paweska, J.T., Burt, F.J., Leman, P.A. and Swanepoel, R. (2005) Gene Expression in Mice Infected with West Nile Virus Strains of Different Neurovirulence. Virology, 342, 119-140.
[134] Fraisier, C., Camoin, L., Lim, S., Bakli, M., Belghazi, M., Fourquet, P., Granjeaud, S., Osterhaus, A.D., Koraka, P., Martina, B. and Almeras, L. (2013) Altered Protein Networks and Cellular Pathways in Severe West Nile Disease in Mice. PLoS ONE, 8, Article ID: e68318.;PONE-D-13-10430 [pii]
[135] Dafna Bonneh-Barkay (2011) Biomarkers of Encephalitis. In: Hayasaka, D., Ed., InTech. http://www.intechopen.com/books/pathogenesis-of-encephalitis/biomarkers-of-encephalitis
[136] Grahn, A., Hagberg, L., Nilsson, S., Blennow, K., Zetterberg, H. and Studahl, M. (2013) Cerebrospinal Fluid Biomarkers in Patients with Varicella-Zoster Virus CNS Infections. Journal of Neurology, 260, 1813-1821. http://dx.doi.org/10.1007/s00415-013-6883-5
[137] Petzold, A., Groves, M., Leis, A.A., Scaravilli, F. and Stokic, D.S. (2010) Neuronal and Glial Cerebrospinal Fluid Protein Biomarkers Are Elevated after West Nile Virus Infection. Muscle & Nerve, 41, 42-49. http://dx.doi.org/10.1002/mus.21448
[138] Petzold, A., Keir, G., Green, A.J., Giovannoni, G. and Thompson, E.J. (2004) An ELISA for Glial Fibrillary Acidic Protein. Journal of Immunological Methods, 287, 169-177.
[139] Petzold, A., Keir, G., Green, A.J., Giovannoni, G. and Thompson, E.J. (2003) A Specific ELISA for Measuring Neurofilament Heavy Chain Phosphoforms. Journal of Immunological Methods, 278, 179-190.
[140] Petzold, A., Green, A.J., Keir, G., Fairley, S., Kitchen, N., Smith, M. and Thompson, E.J. (2002) Role of Serum S100B as an Early Predictor of High Intracranial Pressure and Mortality in Brain injury: A Pilot Study. Critical Care Medicine, 30, 2705-2710.
[141] Shichita, T., Ago, T., Kamouchi, M., Kitazono, T., Yoshimura, A. and Ooboshi, H. (2012) Novel Therapeutic Strategies Targeting Innate Immune Responses and Early Inflammation after Stroke. Journal of Neurochemistry, 123, 29-38.
[142] Allonso, D., Vázquez, S., Guzmán, M.G. and Mohana-Borges, R. (2013) High Mobility Group Box 1 Protein as an Auxiliary Biomarker for Dengue Diagnosis. American Journal of Tropical Medicine and Hygiene, 88, 506-509.
[143] Shichita, T., Hasegawa, E., Kimura, A., Morita, R., Sakaguchi, R., Takada, I., et al. (2012) Peroxiredoxin Family Proteins Are Key Initiators of Post-Ischemic Inflammation in the Brain. Nature Medicine, 18, 911-917.
[144] Zhang, J., Takahashi, H.K., Liu, K., Wake, H., Liu, R., Maruo, T., Date, I., Yoshino, T., Ohtsuka, A., Mori, S. and Nishibori, M. (2011) Anti-High Mobility Group Box-1 Monoclonal Antibody Protects the Blood-Brain Barrier from Ischemia-Induced Disruption in Rats. Stroke, 42, 1420-1428.
[145] Hemingway, J., Field, L. and Vontas, J. (2002) An Overview of Insecticide Resistance. Science, 298, 96-97. 298/5591/96 [pii]
[146] Liu, N., Xu, Q., Li, T., He, L. and Zhang, L. (2009) Permethrin Resistance and Target Site Insensitivity in the Mosquito Culex quinquefasciatus in Alabama. Journal of Medical Entomology, 46, 1424-1429. http://dx.doi.org/10.1603/033.046.0625
[147] Federici, B.A., Park, H.W., Bideshi, D.K., Wirth, M.C. and Johnson, J.J. (2003) Recombinant Bacteria for Mosquito Control. Journal of Experimental Biology, 206, 3877-3885.
http://dx.doi.org/10.1242/jeb.00643
[148] Alphey, L. (2009) Natural and Engineered Mosquito Immunity. Journal of Biology, 8, 40. jbiol143 [pii]
[149] Deredec, A., Burt, A. and Godfray, H.C. (2008) The Population Genetics of Using Homing Endonuclease Genes in Vector and Pest Management. Genetics, 179, 2013-2026. genetics.108.089
037 [pii]
[150] Franz, A.W., Sanchez-Vargas, I., Piper, J., Smith, M.R., Khoo, C.C., James, A.A. and Olson, K.E. (2009) Stability and Loss of a Virus Resistance Phenotype over Time in Transgenic Mosquitoes Harbouring an Antiviral Effector Gene. Insect Molecular Biology, 18, 661-672. IMB908 [pii]
[151] Bai, F., Wang, T., Pal, U., Bao, F., Gould, L.H. and Fikrig, E. (2005) Use of RNA Interference to Prevent Lethal Murine West Nile Virus Infection. Journal of Infectious Diseases, 191, 1148-1154. JID33669 [pii]

  
comments powered by Disqus

Copyright © 2014 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.