The Asymptotic Eigenvalues of First-Order Spectral Differentiation Matrices

Abstract

We complete and extend the asymptotic analysis of the spectrum of Jacobi Tau approximations that were first considered by Dubiner. The asymptotic formulas for Jacobi polynomials PN(α ,β ) ,α ,β > -1 are derived and confirmed by numerical approximations. More accurate results for the slowest decaying mode are obtained. We explain where the large negative eigenvalues come from. Furthermore, we show that a large negative eigenvalue of order N2 appears for -1 <α < 0 ; there are no large negative eigenvalues for collocations at Gauss-Lobatto points. The asymptotic results indicate unstable eigenvalues for α > 1 . The eigenvalues for Legendre polynomials are directly related to the roots of the spherical Bessel and Hankel functions that are involved in solving Helmholtz equation inspherical coordinates.

Share and Cite:

Wang, J. and Waleffe, F. (2014) The Asymptotic Eigenvalues of First-Order Spectral Differentiation Matrices. Journal of Applied Mathematics and Physics, 2, 176-188. doi: 10.4236/jamp.2014.25022.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Canuto, C., Hussaini, M.Y., Quarteroni, A. and Zang, T.A. (1988) Spectral Methods in Fluid Dynamics. Springer, New York. http://dx.doi.org/10.1007/978-3-642-84108-8
[2] Gottlieb, D. (1981) The Stability of Pseudospectral Chebyshev Methods. Mathematics of Computation, 36, 107-118. http://dx.doi.org/10.1090/S0025-5718-1981-0595045-1
[3] Trefethen, L.N. and Embree, M. (2005) Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press.
[4] Trefethen, L.N. and Trummer, M.R. (1987) An Instability Phenomenon in Spectral Methods. SIAM Journal on Numerical Analysis, 24, 1008-1023. http://dx.doi.org/10.1137/0724066
[5] Weideman, J.A.C. and Trefethen, L.N. (1988) The Eigenvalues of Second-Order Spectral Differentiation Matrices. SIAM Journal on Numerical Analysis, 25, 1279-1298. http://dx.doi.org/10.1137/0725072
[6] Dubiner, M. (1987) Asymptotic Analysis of Spectral Methods. Journal of Scientific Computing, 2, 3-31. http://dx.doi.org/10.1007/BF01061510
[7] Tal-Ezer, H. (1986) Spectral Methods in Time for Hyperbolic Equations. SIAM Journal on Numerical Analysis, 23, 11-26. http://dx.doi.org/10.1137/0723002
[8] Jackiewicz, Z. and Welfert, B.D. (2003) Stability of Gauss-RadauPseudospectral Approximations of the One-Dimensional Wave Equation. Journal of Scientific Computing, 18, 287-313. http://dx.doi.org/10.1023/A:1021121008091
[9] Csordas, G., Charalambides, M. and Waleffe, F. (2005) A New Property of a Class of Jacobi Polynomials. Proceedings of the AMS, 133, 3351-3560.
[10] Weideman, J.A.C. and Reddy, S.C. (2000) A Matlab Differentiation MatrixSuite. ACM Transactions on Mathematical Software, 26, 465-519. http://dx.doi.org/10.1145/365723.365727
[11] Arfken, G.B. and Weber, H.J. (1995) Mathematical Methods for Physicists. Academic Press.
[12] Szego, G. (1939) Orthogonal Polynomials. AMS Colloquium Publication, 23.
[13] Waston, G.N. (1995) A Treatise on the Theory of Bessel Functions. 2nd Edition, Cambridge University Press.
[14] Olver, F.W.J. (1970) Why Steepest Descents? SIAM Review, 12, 228-247. http://dx.doi.org/10.1137/1012044
[15] Chester, C., Friedman, B. and Ursell, F. (1957) An Extension of The Method of Steepest Descents. Proc. Cambridge Philos. Soc., 53, 599-611. http://dx.doi.org/10.1017/S0305004100032655
[16] Driver, K.A. and Temme, N.M. (1999) Zero and Pole Distribution of Diagonal Padé Approximants to the Exponential Function. Questiones Mathematicae, 22, 7-17. http://dx.doi.org/10.1080/16073606.1999.9632055
[17] Abramowitz, M. and Stegun, I.A. (Eds.) (1965) Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. Dover Publications.
[18] Colton, D. and Kress, R. (1998) Inverse Acoustic and Electromagnetic Scattering Theory. 2nd Edition, Springer. http://dx.doi.org/10.1007/978-3-662-03537-5
[19] Doha, E.H. (2002) On the Coefficients of Eifferentiated Expansions and Derivatives of Jacobi Polynomials. J. Phys. A: Math. Gen., 35, 3467-3478. http://dx.doi.org/10.1088/0305-4470/35/15/308

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.