PSYCH> Vol.5 No.4, March 2014

Hypothesizing Darkness Induced Alcohol Intake Linked to Dopaminergic Regulation of Brain Function

DownloadDownload as PDF (Size:244KB)  HTML    PP. 282-288  

ABSTRACT

Understanding the role of neurotransmission in the prefrontal cortex and mesolimbic brain regions has become the subject of intensive neuroscience research worldwide. In the 1970s, our group provided evidences that rats exposed to darkness significantly augmented their alcohol intake. At that time, we proposed that melatonin was the culprit. At around the same time, our laboratory, amongst a few others, proposed that dopamine-adducts with acetaldehyde to induce alcohol intake both in rodents and in humans. While the work in these areas has declined considerably over the years, more recent scientifically sound studies continue to show the importance of these earlier controversial ideas involving alcohol abuse and alcoholism. A review of the literature has provided impetus to systematically access the newer genetic and molecular neurobiological findings relevant to the physiological and psychological motives for high alcohol consumption in animals and humans alike. Thus, we hypothesize that darkness-induced alcohol intake is linked not only to serotonergic-melatonin mechanisms, but also to dopaminergic regulation of brain mesolimbic pathways involving neuronal expression switching in response to long photoperiods affecting gene expression.

Cite this paper

Blum, K. , Oscar-Berman, M. , Badgaiyan, R. , Braverman, E. & Gold, M. (2014). Hypothesizing Darkness Induced Alcohol Intake Linked to Dopaminergic Regulation of Brain Function. Psychology, 5, 282-288. doi: 10.4236/psych.2014.54038.

References

[1] Balldin, J., Berggren, U., Berglund, K., & Fahlke, C. (2013). Why Some People Relapse in Alcohol Dependence. There Is a Relation to a Specific Gene Variant in the Dopamine System and to Psychology. Lakartidningen, 110, 21-23.
[2] Blum, K. (1988). Narcotic Antagonism of Seizures Induced by a Dopamine-Derived Tetrahydroisoquinoline Alkaloid. Experientia, 44, 751-753. http://dx.doi.org/10.1007/BF01959150
[3] Blum, K., Braverman, E. R., Holder, J. M., Lubar, J. F., Monastra, V. J., Miller, D., & Comings, D. E. (2000) Reward Deficiency Syndrome: A Biogenetic Model for the Diagnosis and Treatment of Impulsive, Addictive, and Compulsive Behviors. Journal of Psychoactive Drugs, Suppl 32, 1-112. http://dx.doi.org/10.1080/02791072.2000.10736099
[4] Blum, K., DeLallo, L., Briggs, A. H., & Hamilton, M. G. (1982). Opioid Responses of Isoquinoline Alkaloids (TIQs). Progress in Clinical and Biological Research, 90, 387-398.
[5] Blum, K., Elston, S. F., DeLallo, L., Briggs, A. H., & Wallace, J. E. (1983). Ethanol Acceptance as a Function of Genotype Amounts of Brain [Met] Enkephalin. Proceedings of the National Academy of Sciences of the United States of America, 80, 6510-6512. http://dx.doi.org/10.1073/pnas.80.21.6510
[6] Blum, K., Eubanks, J. D., Wallace, J. E., Schwertner, H., & Morgan, W. W. (1976). Possible Role of Tetrahydroisoquinoline Alkaloids in Postalcohol Intoxication States. Annals of the New York Academy of Sciences, 273, 234-246.
http://dx.doi.org/10.1111/j.1749-6632.1976.tb52887.x
[7] Blum, K., Eubanks, J. D., Wallace, J. E., & Schwertner, H. A. (1976). Suppression of Ethanol Withdrawal by Dopamine. Experientia, 32, 493-495. http://dx.doi.org/10.1007/BF01920816
[8] Blum, K., Futterman, S. L., & Pascarosa, P. (1977). Peyote, a Potential Ethnopharmacologic Agent for Alcoholism and Other Drug Dependencies: Possible Biochemical Rationale. Clinical Toxicology, 11, 459-472.
http://dx.doi.org/10.3109/15563657708988210
[9] Blum, K., Gardner, E., Oscar-Berman, M., & Gold, M. (2012). “Liking” and “Wanting” Linked to Reward Deficiency Syndrome (RDS): Hypothesizing Differential Responsivity in Brain Reward Circuitry. Current Pharmaceutical Design, 18, 113-118. http://dx.doi.org/10.2174/138161212798919110
[10] Blum, K., Hamilton, M. G., Meyer, E. K., Hirst, M., & Marshall, A. (1977). Isoquinoline Alkaloids as Possible Regulators of Alcohol Addiction. Lancet, 1, 799-800. http://dx.doi.org/10.1016/S0140-6736(77)92981-6
[11] Blum, K., Merritt, J. H., Reiter, R. J., & Wallace, J. E. (1973). A Possible Relationship between the Pineal Gland and Ethanol Preference in the Rat. Current Therapeutic Research, Clinical and Experimental, 15, 25-30.
[12] Blum, K., Noble, E. P., Sheridan, P. J., Montgomery, A., Ritchie, T., Jagadeeswaran, P., & Cohn, J. B. (1990). Allelic Association of Human Dopamine D2 Receptor Gene in Alcoholism. JAMA: The Journal of the American Medical Association, 263, 2055-2060. http://dx.doi.org/10.1001/jama.1990.03440150063027
[13] Bruijnzeel, A. W., & Gold, M. S. (2005). The Role of Corticotropin-Releasing Factor-Like Peptides in Cannabis, Nicotine, and Alcohol Dependence. Brain Research. Brain Research Reviews, 49, 505-528.
http://dx.doi.org/10.1016/j.brainresrev.2005.01.007
[14] Cohen, G., & Collins, M. (1970). Alkaloids from Catecholamines in Adrenal Tissue: Possible Role in Alcoholism. Science, 167, 1749-1751. http://dx.doi.org/10.1126/science.167.3926.1749
[15] Coon, S. L., Munson, P. J., Cherukuri, P. F., Sugden, D., Rath, M. F., Moller, M., & Klein, D. C. (2012). Circadian Changes in Long Noncoding RNAs in the Pineal Gland. Proceedings of the National Academy of Sciences of the United States of America, 109, 13319-13324. http://dx.doi.org/10.1073/pnas.1207748109
[16] Crespi, F. (2012). Influence of Melatonin or Its Antagonism on Alcohol Consumption in Ethanol Drinking Rats: A Behavioral and in Vivo Voltammetric Study. Brain research, 1452, 39-46. http://dx.doi.org/10.1016/j.brainres.2011.10.050
[17] Dackis, C. A., Bailey, J., Pottash, A. L., Stuckey, R. F., Extein, I. L., & Gold, M. S. (1984). Specificity of the DST and the TRH Test for Major Depression in Alcoholics. The American Journal of Psychiatry, 141, 680-683.
[18] Dackis, C. A., & Gold, M. S. (1985). New Concepts in Cocaine Addiction: The Dopamine Depletion Hypothesis. Neuroscience and Biobehavioral Reviews, 9, 469-477. http://dx.doi.org/10.1016/0149-7634(85)90022-3
[19] Dahlgren, A., Wargelius, H. L., Berglund, K. J., Fahlke, C., Blennow, K., Zetterberg, H., & Balldin, J. (2011). Do Alcohol-Dependent Individuals with DRD2 A1 Allele Have an Increased Risk of Relapse? A Pilot Study. Alcohol and alcoholism, 46, 509-513. http://dx.doi.org/10.1093/alcalc/agr045
[20] Davis, V. E., & Walsh, M. J. (1970). Alcohol, Amines, and Alkaloids: A Possible Biochemical Basis for Alcohol Addiction. Science, 167, 1005-1007. http://dx.doi.org/10.1126/science.167.3920.1005
[21] Deehan Jr., G. A., Brodie, M. S., & Rodd, Z. A. (2013). What Is in That Drink: The Biological Actions of Ethanol, Acetaldehyde, and Salsolinol. Current Topics in Behavioral Neurosciences, 13, 163-184.
[22] Deehan Jr., G. A., Hauser, S. R., Wilden, J. A., Truitt, W. A., & Rodd, Z. A. (2013). Elucidating the Biological Basis for the Reinforcing Actions of Alcohol in the Mesolimbic Dopamine System: The Role of Active Metabolites of Alcohol. Frontiers in Behavioral Neuroscience, 7, 104.
[23] Dulcis, D., Jamshidi, P., Leutgeb, S., & Spitzer, N. C. (2013). Neurotransmitter Switching in the Adult Brain Regulates Behavior. Science, 340, 449-453. http://dx.doi.org/10.1126/science.1234152
[24] Ebadi, M. S., Weiss, B., & Costa, E. (1970). Adenosine 3’-5’-Monophosphate in Rat Pineal Gland: Increase Induced by Light. Science, 170, 188-190. http://dx.doi.org/10.1126/science.170.3954.188
[25] El Halawani, M. E., Kang, S. W., Leclerc, B., Kosonsiriluk, S., & Chaiseha, Y. (2009). Dopamine-Melatonin Neurons in the Avian Hypothalamus and Their Role as Photoperiodic Clocks. General and Comparative Endocrinology, 163, 123-127.
http://dx.doi.org/10.1016/j.ygcen.2008.11.030
[26] Ericson, M., Molander, A., Lof, E., Engel, J. A., & Soderpalm, B. (2003). Ethanol Elevates Accumbal Dopamine Levels via Indirect Activation of Ventral Tegmental Nicotinic Acetylcholine Receptors. European Journal of Pharmacology, 467, 85-93. http://dx.doi.org/10.1016/S0014-2999(03)01564-4
[27] Geller, I. (1971). Ethanol Preference in the Rat as a Function of Photoperiod. Science, 173, 456-459.
http://dx.doi.org/10.1126/science.173.3995.456
[28] Geller, I., & Blum, K. (1970). The Effects of 5-HTP on Para-Chlorophenylalanine (p-CPA) Attenuation of “Conflict” Behavior. European Journal of Pharmacology, 9, 319-324. http://dx.doi.org/10.1016/0014-2999(70)90229-3
[29] Hamilton, M. G., Blum, K., & Hirst, M. (1978). Identification of an Isoquinoline Alkaloid after Chronic Exposure to Ethanol. Alcoholism, Clinical and Experimental Research, 2, 133-137. http://dx.doi.org/10.1111/j.1530-0277.1978.tb04713.x
[30] Hamilton, M. G., Blum, K., & Hirst, M. (1980). In Vivo Formation of Isoquinoline Alkaloids: Effect of Time and Route of Administration of Ethanol. Advances in Experimental Medicine and Biology, 126, 73-86.
http://dx.doi.org/10.1007/978-1-4684-3632-7_8
[31] Hamilton, M. G., Hirst, M., & Blum, K. (1979). Opiate-Like Activity of Salsolinol on the Electrically Stimulated Guinea Pig Ileum. Life Sciences, 25, 2205-2210. http://dx.doi.org/10.1016/0024-3205(79)90093-6
[32] Hendrickson, L. M., Zhao-Shea, R., & Tapper, A. R. (2009). Modulation of Ethanol Drinking-in-the-Dark by Mecamylamine and Nicotinic Acetylcholine Receptor Agonists in C57BL/6J Mice. Psychopharmacology, 204, 563-572.
http://dx.doi.org/10.1007/s00213-009-1488-5
[33] Hipolito, L., Sanchez-Catalan, M. J., Granero, L., & Polache, A. (2009). Local Salsolinol Modulates Dopamine Extracellular Levels from Rat Nucleus Accumbens: Shell/Core Differences. Neurochemistry International, 55, 187-192.
http://dx.doi.org/10.1016/j.neuint.2009.02.014
[34] Marshall, A., Hirst, M., & Blum, K. (1977). Analgesic EFFECTS of 3-Carboxysalsolinol Alone and in Combination with Morphine. Experientia, 33, 754-755.
[35] Matsuzawa, S., Suzuki, T., & Misawa, M. (2000). Involvement of Mu-Opioid Receptor in the Salsololin-Associated Place Preference in Rats Exposed to Conditioned Fear Stress. Alcoholism, Clinical and Experimental Research, 24, 366-372.
[36] Melchior, C. L., Simpson, C. W., & Myers, R. D. (1978). Dopamine Release within Forebrain Sites Perfused with Tetrahydroisoquinolines or Tryptoline in the Rat. Brain Research Bulletin, 3, 631-634.
http://dx.doi.org/10.1016/0361-9230(78)90009-6
[37] Melis, M., Carboni, E., Caboni, P., & Acquas, E. (2013). Key Role of Salsolinol in Ethanol Actions on Dopamine Neuronal Activity of the Posterior Ventral Tegmental Area. Addiction Biology. http://dx.doi.org/10.1111/adb.12097
[38] Miguel Asai, M. A., Lilian Mayagoitia, L. M., David Garcia, D. G., Gilberto Matamoros-Trejo, G. M., Marcela Valdes-Tovar, M. V., & Phillipe Leff, P. L. (2007). Rat Brain Opioid Peptides-Circadian Rhythm Is under Control of Melatonin. Neuropeptides, 41, 389-397. http://dx.doi.org/10.1016/j.npep.2007.09.001
[39] Myers, R. D. (1989). Isoquinolines, Beta-Carbolines and Alcohol Drinking: Involvement of Opioid and Dopaminergic Mechanisms. Experientia, 45, 436-443. http://dx.doi.org/10.1007/BF01952025
[40] Myers, R. D., & Veale, W. L. (1968). Alcohol Preference in the Rat: Reduction Following Depletion of Brain Serotonin. Science, 160, 1469-1471. http://dx.doi.org/10.1126/science.160.3835.1469
[41] Namboodiri, M. A., Sugden, D., Klein, D. C., Tamarkin, L., & Mefford, I. N. (1985). Serum Melatonin and Pineal Indoleamine Metabolism in a Species with a Small Day/Night N-Acetyltransferase Rhythm. Comparative Biochemistry and Physiology. B, Comparative Biochemistry, 80, 731-736. http://dx.doi.org/10.1016/0305-0491(85)90453-5
[42] Peres, R., do Amaral, F. G., Madrigrano, T. C., Scialfa, J. H., Bordin, S., Afeche, S. C., & Cipolla-Neto, J. (2011). Ethanol Consumption and Pineal Melatonin Daily Profile in Rats. Addiction Biology, 16, 580-590.
http://dx.doi.org/10.1111/j.1369-1600.2011.00342.x
[43] Raiewski, E. E., Elliott, J. A., Evans, J. A., Glickman, G. L., & Gorman, M. R. (2012). Twice Daily Melatonin Peaks in Siberian but Not Syrian Hamsters under 24 h Light:Dark:Light:Dark Cycles. Chronobiology International, 29, 1206-1215.
http://dx.doi.org/10.3109/07420528.2012.719965
[44] Reiter, R. J., Blum, K., Wallace, J. E., & Merritt, J. H. (1973). Effect of the Pineal Gland on Alcohol Consumption by Congenitally Blind Male Rats. Quarterly Journal of Studies on Alcohol, 34, 937-939.
[45] Reiter, R. J., Blum, K., Wallace, J. E., & Merritt, J. H. (1974). Pineal Gland Evidence for an Influence on Ethanol Preference in Male Syrian Hamsters. Comparative Biochemistry and Physiology A: Comparative Physiology, 47, 11-16.
http://dx.doi.org/10.1016/0300-9629(74)90045-0
[46] Robichaud, R. C., & Sledge, K. L. (1969). The Effects of P-Chlorophenylalanine on Experimentally Induced Conflict in the Rat. Life Sciences, 8, 965-969. http://dx.doi.org/10.1016/0024-3205(69)90427-5
[47] Rodd, Z. A., Oster, S. M., Ding, Z. M., Toalston, J. E., Deehan, G., Bell, R. L., Li, T. K., & McBride, W. J. (2008). The Reinforcing Properties of Salsolinol in the Ventral Tegmental Area: Evidence for Regional Heterogeneity and the Involvement of Serotonin and Dopamine. Alcoholism, Clinical and Experimental Research, 32, 230-239.
http://dx.doi.org/10.1111/j.1530-0277.2007.00572.x
[48] Sallstrom Baum, S., Hill, R., Kiianmaa, K., & Rommelspacher, H. (1999). Effect of Ethanol on (R) and (S)-Salsolinol, Salsoline, and THP in the Nucleus Accumbens of AA and ANA Rats. Alcohol, 18, 165-169.
http://dx.doi.org/10.1016/S0741-8329(98)00080-9
[49] Self, D. W., & Nestler, E. J. (1998). Relapse to Drug-Seeking: Neural and Molecular Mechanisms. Drug and Alcohol Dependence, 51, 49-60. http://dx.doi.org/10.1016/S0376-8716(98)00065-9
[50] Sinclair, J. D. (1972). The Alcohol-Deprivation Effect. Influence of Various Factors. Quarterly Journal of Studies on Alcohol, 33, 769-782.
[51] Sleipness, E. P., Jansen, H. T., Schenk, J. O., & Sorg, B. A. (2008). Time-of-Day Differences in Dopamine Clearance in the Rat Medial Prefrontal Cortex and Nucleus Accumbens. Synapse, 62, 877-885. http://dx.doi.org/10.1002/syn.20552
[52] Steiner, S. A. (1958). Meprobamate for Alcohol Addiction; a Psychotherapeutic Adjunct. The Medical Annals of the District of Columbia, 27, 350-351.
[53] Wang, F., Simen, A., Arias, A., Lu, Q. W., & Zhang, H. (2013). A Large-Scale Meta-Analysis of the Association between the ANKK1/DRD2 Taq1A Polymorphism and Alcohol Dependence. Human Genetics, 132, 347-358.
http://dx.doi.org/10.1007/s00439-012-1251-6
[54] Yaegashi, T., Jin, J., Sawada, T., Saito, H., Fulop, F., Nagy, G. M., & Hashizume, T. (2012). Effects of Photoperiod on SalsolinolInduced Prolactin Secretion in Goats. Animal Science Journal, 83, 418-425.
http://dx.doi.org/10.1111/j.1740-0929.2011.00965.x

  
comments powered by Disqus

Copyright © 2014 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.