JQIS> Vol.4 No.1, March 2014

Approximate Quantum State Sharings via Pair of Private Quantum Channels

DownloadDownload as PDF (Size:326KB)  HTML    PP. 64-70  


We investigate a quantum communication protocol, of so-called approximate quantum state sharing (AQSS), that protocol is basically based on pair of private quantum channels. In this paper, we prove that the scheme is secure against any external and internal attacks of wiretapping in principle. Although the protocol leaks small amount of information corresponding to a security parameter , the scheme still preserves its information-theoretic security.

Cite this paper

Chi, D. and Jeong, K. (2014) Approximate Quantum State Sharings via Pair of Private Quantum Channels. Journal of Quantum Information Science, 4, 64-70. doi: 10.4236/jqis.2014.41006.


[1] Bennett, C.H. and Brassard, G. (1984) Quantum Cryptography: Public Key Distribution and Coin Tossing. Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, 175-179.
[2] Bennett, C.H. (1992) Quantum Cryptography Using Any Two Nonorthogonal States. Physical Review Letters, 68, 3121. http://dx.doi.org/10.1103/PhysRevLett.68.3121
[3] Ambainis, A., Mosca, M., Tapp, A. and de Wolf, R. (2000) Private Quantum Channels. IEEE Symposium on Foundations of Computer Sciences (FOCS), 547-553.
[4] Hayden, P., Leung, D., Shor, P.W. and Winter, A. (2004) Randomizing Quantum States: Constructions and Applications. Communication in Mathematical Physics, 250, 371-391. http://dx.doi.org/10.1007%2Fs00220-004-1087-6
[5] Ambainis, A. and Smith, A. (2004) Small Pseudo-Random Families of Matrices: Derandomizing Approximate Quantum Encryption. Proceedings of RANDOM, LNCS 3122, Springer, Berlin-Heidelberg-New York.
[6] Dickinson, P.A. and Nayak, A. (2006) Approximate Randomization of Quantum States With Fewer Bits of Key. AIP Conference Proceedings, 864, 18. http://dx.doi.org/10.1063/1.2400876
[7] Harrow, A., Hayden, P. and Leung, D. (2004) Superdense Coding of Quantum States. Physical Review Letters, 92, Article ID: 187901. http://dx.doi.org/10.1103/PhysRevLett.92.187901
[8] Bennett, C.H., Hayden, P., Leung, D., Shor, P.W. and Winter, A. (2006) Remote Preparation of Quantum States. IEEE Transactions on Information Theory, 51, 56-74. http://dx.doi.org/10.1109/TIT.2004.839476
[9] Hillery, M., Buzek, V. and Berthiaume, A. (1999) Quantum Secret Sharing. Physical Review A, 59, 1829.
[10] Karlsson, A., Koashi, M. and Imoto, N. (1999) Quantum Entanglement for Secret Sharing and Secret Splitting. Physical Review A, 59, 162. http://dx.doi.org/10.1103/PhysRevA.59.162
[11] Nagaj, D. and Kerenidis, I. (2006) On the Optimality of Quantum Encryption Schemes. Journal of Mathematical Physics, 47, Article ID: 092102. http://dx.doi.org/10.1063/1.2339014
[12] Bouda, J. and Ziman, M. (2007) Optimality of Private Quantum Channels. Journal of Physics A: Mathematical and Theoretical, 40, 5415. http://dx.doi.org/10.1088/1751-8113/40/20/011
[13] Aubrun, G. (2009) On Almost Randomizing Channels with a Short Kraus Decomposition. Communication in Mathematical Physics, 288, 1103-1116. http://dx.doi.org/10.1007/s00220-008-0695-y
[14] Groisman, B., Popescu, S. and Winter, A. (2005) Quantum, Classical, and Total Amount of Correlations in a Quantum state. Physical Review A, 72, Article ID: 032317. http://dx.doi.org/10.1103/PhysRevA.72.032317

comments powered by Disqus

Copyright © 2014 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.