Studies on Chromate Removal by Chromium-Resistant Bacillus sp. Isolated from Tannery Effluent

Download Download as PDF (Size:210KB)  HTML    PP. 76-82  
DOI: 10.4236/jep.2011.21008    5,346 Downloads   11,682 Views   Citations


A chromate-removing strain was isolated from spent chrome effluent and identified as Bacillus circulans strain MN1. The isolated strain was studied for resistance to Cr (VI) and its ability to remove Cr (VI). The strain was found to tolerate Cr (VI) concentration as high as 4500 mg/L, but the cells growth was heavily influenced when initial Cr (VI) concentration was increased between 1110 mg/L and 4500 mg/L while Cr(VI) at 500 mg/L to 1110 mg/L did not suppressed the cells growth. The experiments also demonstrated that the cells removed toxic Cr (VI) more efficiently at 30?C compared with that at 25?C and 35?C. The optimum initial pH for Cr (VI) removal was 5.6 and final pH values of 5.1-5.6 were observed for initial pH 5.2-5.7.

Cite this paper

M. Chaturvedi, "Studies on Chromate Removal by Chromium-Resistant Bacillus sp. Isolated from Tannery Effluent," Journal of Environmental Protection, Vol. 2 No. 1, 2011, pp. 76-82. doi: 10.4236/jep.2011.21008.


[1] A. Agrawal, V. Kumar and B. D. Pandy, “Remediation Options for the Treatment of Electroplating and Leather Tanning Effluent Containing Chromium-a Review,” Mineral Processing and Extractive Metallurgy Review, Vol. 27, No. 2, 2006, pp. 99-130. doi:10.1080/08827500600563319
[2] M. Jr. Horsfall, F. Ogban and E. E. Akporhonor, “Sorption of Chromium (VI) from Aqueous Solution by Cassava (Manihot Sculenta CRANZ) Waste Biomass,” Chemistry and Biodiversity, Vol. 3, No. 2, 2006, pp. 161-173. doi:10.1002/cbdv.200690019
[3] J. McLean and T. J. Beveridge, “Chromate Reduction by Pseudomonas Isolated from a Site Contaminated with Chromated Copper Arsenate,” Applied and Environment Microbiology, Vol. 67, No. 3, 2001, pp. 1076-1084. doi:10.1128/AEM.67.3.1076-1084.2001
[4] S. S. Ahluwalia and D. Goyal, “Microbial and Plant Derived Biomass for Removal of Heavy Metals from Wastewater,” Bioresource Technology, Vol. 98, No. 12, 2007, pp. 2243-2257. doi:10.1016/j.biortech.2005.12.006
[5] G. Naja and B. Volesky, “Behavior of Mass Transfer Zone in a Biosorption Column,” Environmental Science and Technology, Vol. 40, No. 12, 2006, pp. 3996-4003. doi:10.1021/es051542p
[6] A. I. Zouboulis, M. X. Loukidou and K. A. Matis, “Biosorption of Toxic Metals from Aqueous Solutions by Bacteria Strain Isolated from Metal Polluted Soils,” Process Biochemistry, Vol. 39, No. 8, 2004, pp. 909-916. doi:10.1016/S0032-9592(03)00200-0
[7] E. Kulczycki, F. G. Ferris and D. Fortin, “Impact of Cell Wall Structure on the Behavior of Bacterial Cells as Sorbent of Cadmium and Lead,” Geomicrobiology Journal, Vol. 19, No. 6, 2002, pp. 553-556. doi:10.1080/01490450290098586
[8] B. Godlewska-Zylkiewicz, “Microorganisms in Inorganic Chemical Analysis,” Analytical and Bioanalytical Chemistry, Vol. 384, 2006, pp. 114-123. doi:10.1007/s00216-005-0142-2
[9] A. Ganguli and A. K. Tripathi, “Bioremadiation of Toxic Chromate from Electroplating Effluent by Chrome- Reducing Pseudomonas Aeruginosa A2Chr in Two Bioreactors,” Applied Microbiology and Biotechnology, Vol. 58, No. 3, 2002, pp. 416-420. doi:10.1007/s00253-001-0871-x
[10] D. R. Lovely and E. J. P. Phillips, “Reduction of Chromate by Desulfovibrio Vulgaris and Its C3 Cytochrome,” Applied and Environment Microbiology, Vol. 60, No. 2, 1994, pp. 726-728.
[11] V. V. Konovalova, G. M. Dmytrenko, R. R. Nigmatullin, M. T. Bryk and P. I. Gvozdyak, “Chromium(VI) Reduction in Membrane Bioreactor with Immobilized Psedomonas Cells,” Enzyme and Microbial Technology, Vol. 33, No. 7, 2003, pp. 899-907. doi:10.1016/S0141-0229(03)00204-7
[12] A. Ganguli and A. K. Tripathi, “Survival and Chrome Reducing Ability of Pseudomonas Aeruginosa in Industrial Effluents,” Letters in Applied Microbiology, Vol. 28, No. 1, 1999, pp. 76-80. doi:10.1046/j.1365-2672.1999.00457.x
[13] Y. G. Liu, W. H. Xu , G. M. Zeng, C. F. Tang and C. F. Li, “Experimental Study on Reduction by Pseudomonas Aeruginosa,” Journal of Environmental Sciences, Vol. 16, No. 5, 2004, pp. 797-801.
[14] H. Shen and Y. T. Wang, “Characterization of Enzymatic Reduction of Hexavalent Chromium by Eshcherichia Coli ATCC 33456,” Applied and Environment Microbiology, Vol. 59, No. 11, 1993, pp. 3771-3777.
[15] D. F. Ackerley, C. F. Gonzalez, M. Keyhan, R. Blake and A. Matin, “Mechanism of Chromate Reduction by Eshcherichia Coli Protein, Nfsa, and Role of Different Chromate Reductases in Minimizing Oxidative Stress during Chromate Reduction,” Environmental Microbiology, Vol. 6, No. 8, 2004, pp. 851-860. doi:10.1111/j.1462-2920.2004.00639.x
[16] H. Ohtake, E. Fujii and K. Toda, “Reduction of Toxic Chromate in Industrial Effluent by Use of Chromate Reducing Strain of Enterobacter Cloacae,” Environmental Science and Technology, Vol. 11, 1990, pp. 663-668. doi:10.1080/09593339009384909
[17] M. A. Rege, J. N. Petersen, D. L. Johnstone, C. E. Turick, D. R. Yonge and W. A. Apel, “Bacterial Reduction of Hexavalent Chromium by Enterobacter Cloacae Strain HO1 Grown on Sucrose,” Biotechnology letters, Vol.19 No.7, 1997, pp. 691-694. doi:10.1023/A:1018355318821
[18] P. C. Wang, T. Mori, K. Komori, M. Sasatsu, K. Toda and H. Ohtake, “Isolation and Characterization of Enterobacter Cloacae Strain that Reduces Hexavalent Chromium under Anaerobic Conditions,” Applied and Environment Microbiology, Vol. 55, No. 7, 1989, pp. 1665-1669.
[19] C. Garbisu, I. Alkorta, M. J. Lama and J. L. Serra, “Aerobic Chromate Reduction by Bacillus Subtilis,” Biodegradation, Vol. 9, No. 2, 1998, pp. 133-141. doi:10.1023/A:1008358816529
[20] L. Philip, L. Iyengar and C. Vencobachar, “Cr (VI) Reduction by Bacillus Coagulans Isolated from Contaminated Soils,” Journal of Environmental Engineering, Vol. 124, No. 12, 1998, pp. 1165-1170. doi:10.1061/(ASCE)0733-9372(1998)124:12(1165)
[21] Y. T. Wang and C. S. Xiao, “Factors Affecting Hexavalent Chromium Reduction in Pure Culture of Bacteria,” Water Research, Vol. 29, No. 11, 1995, pp. 2467-2474. doi:10.1016/0043-1354(95)00093-Z
[22] C. R. Myer, B. P. Carstens, W. E. Antholine and J. M. Myers, “Chromium (VI) Reductase Activity Associated with the Cytoplasmic Membrane of Anaerobically Grown Shewanella Putrefaciens MR-1,” Journal of Applied Microbiology, Vol. 88, No. 1, 2000, pp. 98-106. doi:10.1046/j.1365-2672.2000.00910.x
[23] S. Viamajala, B. M. Peyton and J. N. Petersen, “Modelling Chromate Reduction in Shewanella Oneidensis MR-1: Development of a Novel Dual-Enzyme Kinetic Model,” Biotechnology and Bioengineering, Vol. 83, No. 7, 2003, pp. 790-797. doi:10.1002/bit.10724
[24] H. Horitsu, S. Futo, Y. Miyaza, S. Ogais and K. Kawai, “Enzymatic Reduction of Hexavalent Chromium by Hexavalent Chromium Tolerant Pseudomonas Ambigua G-1,” Agric Biol Chems, Vol. 51, 1987, pp. 2417-2420.
[25] L.H. Bopp and H. L. Ehrlich, “Chromate Resistance and Reduction in Pseudomonas Fluorescence Strain LB300,” Archives of Microbiology, Vol. 150, No. 5, 1988, pp. 426- 31. doi:10.1007/BF00422281
[26] P. C. Wang, T. Mori, K. Toda and H. Ohtake, “Membrane-Associated Chromate Activity from Enterobacter Cloacae,” Journal of Bacteriology, Vol. 172, No. 3, 1990, pp. 1670-1672.
[27] C. H. Park, M. Keyhan, B. Wielinga, S. Fendorf and A. Matin, “Purification to Homogeneity and Characterization of a Novel Pseudomonas Putida Chromate Reductase,” Applied and Environment Microbiology, Vol. 66, No. 5, 2000, pp. 1788-1795. doi:10.1128/AEM.66.5.1788-1795.2000
[28] D. F. Ackerley, C. F. Gonzalez, C. H. Park, R. Blake, M. Keyhan and A. Matin, “Chromate Reducing Properties of Soluble Flavoproteins from Pseudomonas Putida and Eshcherichia Coli,” Applied and Environment Microbiology, Vol. 70, No. 2, 2004, pp. 873-882. doi:10.1128/AEM.70.2.873-882.2004
[29] J. G. H Bergey, R. K. Noel and H. A. S. Peter, “Bergeys Manual of Determinative Bacteriology,” 9th Ed., Lippincott Williams & Wilkins, Baltimore, 1994.
[30] APHA (American Public Health Association), AWWA (American Water Works Association) and WEF (American Environment Federation), “Standard Methods for the Examination of Water and Wastewaters (20th Ed.),” Washington DC, USA, 1998.
[31] F. A. O. Camargo, F. M. Bento and B. C. Okeke, W. T. Frankenberger, “Chromate Reduction by Chromium-Re- Sistant Bacteria Isolated from Soils Contaminated with Dichromate,” Journal of Environmental Quality, Vol. 32, No. 4, 2003, pp. 1228-1233. doi:10.2134/jeq2003.1228
[32] A. R. Shakoori, M. Makhdoom and R. U. Haq, “Hexavalent Chromium Reduction by a Dichromate-Resistant Gram-Positive Bacterium Isolated from Effluents of Tanneries,” Applied Microbiology and Biotechnology, Vol. 53, 2005, pp. 348-351. doi:10.1007/s002530050033
[33] C. Viti, A. Pace and L. Giovannetti, “Characterization of Cr(VI)-Resistant Bacteria Isolated from Chromium-Con- Taminated Soil by Tannery Activity,” Current Microbiology, Vol. 46, No. 1, 2003, pp. 1. doi:10.1007/s00284-002-3800-z

comments powered by Disqus

Copyright © 2016 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.