Investigation of Swelling/Sorption Characteristics of Highly Swollen AAm/AMPS Hydrogels and Semi IPNs with PEG as Biopotential Sorbent

Abstract

The aim of this study was to investigate the equilibrium swelling and sorption properties of chemically crosslinked copolymeric hydrogels as biopotential sorbent consisting of acrylamide (AAm) and 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS). Semi-interpenetrating polymer network (semi IPNs) hydrogel, composed of AAm with AMPS as co-monomer, with poly (ethylene glycol) (PEG) and a multifunctional crosslinker such as trimethylolpropane triacrylate (TMPTA) was prepared. AAm/AMPS hydrogels and AAm/AMPS/PEG semi IPNs were synthesized by free radical solution polymerization by using ammonium persulphate (APS)/N,N,N’,N’-tetramethylethylenediamine (TEMED) as redox initiating pair. Swelling experiments were performed in water, 0.01 M and 0.03 M aqueous urea solutions at 25oC, gravimetrically. The hydrogels showed enormous swelling in aqueous urea/water medium and displayed swelling characteristics that were highly depended on the chemical composition of the hydrogels. FTIR spectroscopy was used to identify the presence of different repeating units in the semi IPNs. Some swelling and diffusion characteristics were calculated for different semi IPNs and hydrogels prepared under various formulations. For sorption of cationic dye, Lauths violet into the hydrogels was studied by batch sorption technique at 25oC. Dye removal capacity, adsorption percentage and partition coefficient of the hydrogels was investigated. Swelling and dye sorption properties of AAm/AMPS hydrogels and AAm/AMPS/PEG semi IPNs were investigated as a function of chemical composition of the hydrogels.

Share and Cite:

E. Karadağ, S. Kundakci and Ö. Üzüm, "Investigation of Swelling/Sorption Characteristics of Highly Swollen AAm/AMPS Hydrogels and Semi IPNs with PEG as Biopotential Sorbent," Journal of Encapsulation and Adsorption Sciences, Vol. 1 No. 1, 2011, pp. 7-22. doi: 10.4236/jeas.2011.11002.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. Li, “Removal of Crystal Violet from Aqueous Solution by Sorption into Semi-Interpenetrated Networks Hydrogels Constituted of Poly (Acrylic Acid-Acrylamide-Methacrylate) and Amylose,” Bioresource Technology, Vol. 101, 2010, pp. 2197-2202. doi:10.1016/j.biortech.2009.11.044
[2] G. Gü?lü, E. Al, S. Emik, T. B. ?yim, S. ?zgümü? and M. ?zyürek, “Removal of Cu2+ and Pb2+ Ions from Aqueous Solutions by Starch-Graft-Acrylic Acid/Montmorillonite Superabsorbent Nanocomposite Hydrogels,” Polymer Bulletin, Vol. 65, 2010, pp. 333-346. doi:10.1007/s00289-009-0217-x
[3] A. L. Buyanov, I. V. Gofman, L. G. Revel’skaya, A. K. Khripunov and A. A. Tkachenko, “Anisotropic Swelling and Mechanical Behavior of Composite Bacterial Cellulose-Poly (aAcrylamide or Acrylamide-Sodium Acrylate) Hydrogels,” Journal of the Mechanical Behavior of Biomedical Materials, Vol. 3, 2010, pp. 102-111. doi:10.1016/j.jmbbm.2009.06.001
[4] E. Karada?, T. K?r??t?, S. Kundakc? and ?. B. üzüm, “Investigation of Sorption/Swelling Characteristics of Chemically Crosslinked AAm/SMA Hydrogels as Biopotential Sorbent,” Journal of Applied Polymer Science, Vol. 117, No. 3, 2010, pp. 1787-1797.
[5] E. U?uzdo?an, E. B. Denkba? and O. S. Kabasakal, “The Use of Polyethyleneglycolmethacrylate-Co-vinylimi- dazole (PEGMA-co-VI) Microspheres for the Removal of Nickel(II) and Chromium(VI) Ions,” Journal of Hazardous Materials, Vol. 177, 2010, pp. 119-125. doi:10.1016/j.jhazmat.2009.12.004
[6] E. Karada?, S. Kundakc? and ?. B. üzüm, “Water Sorption and Dye Uptake Studies of Highly Swollen AAm/AMPS Hydrogels and Semi-IPN’s with PEG,” Polymer-Plastics Technology and Engineering, Vol. 48, No. 12, 2009, pp. 1217-1229.
[7] N. ?ahiner, “Colloidal Nanocomposite Hydrogel Particles,” Colloid and Polymer Science, Vol. 285, 2007, pp. 413-421. doi:10.1007/s00396-006-1583-7
[8] B. Chu and B. S. Hsiao, “The Role of Polymers in Breakthrough Technologies for Water Purification,” Journal of Polymer Science Part B: Polymer Physics, Vol. 47, 2009, pp. 2431-2435. doi:10.1002/polb.21854
[9] M. ?. Akkaya, S. Emik, G. Gü?lü, T. B. ?yim and S. ?zgümü?, “Removal of Basic Dyes from Aqueous Solutions by Crosslinked-Acrylic Acid/Acrylamidopropane Sulfonic Acid Hydrogels,” Journal of Applied Polymer Science, Vol. 114, 2009, pp. 1150-1159. doi:10.1002/app.30704
[10] ?. ?zay, S. Ekici, Y. Baran, N. Akta? and N. ?ahiner, “Removal of Toxic Metal Ions with Magnetic Hydrogels,” Water Research, Vol. 43, 2009, pp. 4403-4411. doi:10.1016/j.watres.2009.06.058
[11] V. Bekiari, M. Sotiropoulou, G. Bokias and P. Lianos, “Use of Poly (N,N-Dimethylacrylamide-Co-Sodium Acrylate) Hydrogel to Extract Cationic Dyes and Metals from Water,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 312, 2008, pp. 214-218. doi:10.1016/j.colsurfa.2007.06.053
[12] E. Karada?, ?. B. üzüm, S. Kundakc? and D. Sarayd?n, “Polyelectrolyte CASA Hydrogels for Uptake of Uuranyl Ions from Aqueous Solutions,” Journal of Applied Polymer Science, Vol. 104, 2007, pp. 200-204. doi:10.1002/app.25397
[13] E. K. Yetimo?lu, M. V. Kahraman, ?. Ercan, Z. S. Akdemir and N. Kayaman Apohan, “N. N-vinylpyyrolidone /Acrylic Acid/2-Aacrylamido-2-Methylpropane Sulponic Acid Based Hydrogels: Synthesis, Characterization and Their Application in the Removal of Heavy Metals,” Reactive Functional Polymers, Vol. 67, 2007, pp. 451-460. doi:10.1016/j.reactfunctpolym.2007.02.007
[14] N. ?ahiner, W. T. Godbey, G. L. McPherson and V. T. John, “Microgel, Nanogel and Hydrogel-Hydrogel Semi-IPN Composites for Biomedical Applications: Synthesis and Characterization,” Colloid and Polymer Science, Vol. 284, 2006, pp. 1121-1129. doi:10.1007/s00396-006-1489-4
[15] G. Crini, “Recent dDevelopments in Polysaccharide-Based Materials Used as Adsorbents in Wastewater Treatment,” Progress Polymer Science, Vol. 30, 2005, pp. 38-70. doi:10.1016/j.progpolymsci.2004.11.002
[16] G. Crini, “Non-Conventional Low-Cost Adsorbents for the Removal: A Review,” Bioresource Technology, Vol. 97, 2006, pp. 1061-1085. doi:10.1016/j.biortech.2005.05.001
[17] E. Karada?, ?. B. üzüm and D. Sarayd?n, “Swelling Equilibria and Dye Adsorption Studies of Chemically Crosslinked Superabsorbent Acrylamide/Maleic Acid Hydrogels,” European Polymer Journal, Vol. 38, 2002, pp. 2133-2141. doi:10.1016/S0014-3057(02)00117-9
[18] O. Güven, M. ?en, E. Karada? and D. Sarayd?n, “A Review on the Radiation Synthesis of Copolymeric Hy-drogels for Adsorption and Seperation Purposes,” Radiation Physics and Chemistry, Vol. 56, 1999, pp. 381-386. doi:10.1016/S0969-806X(99)00326-6
[19] L. Serra, J. Domenech and N. A. Peppas, “Design of Poly (Ethylene Glycol)-Tethered Copolymers as Novel Mucoadhe- sive Drug Delivery System,” European Journal of Pharma- ceutics and Biopharmaceutics, Vol. 63, 2006, pp. 11-18. doi:10.1016/j.ejpb.2005.10.011
[20] P. Krsko and M. Libera, “Biointeractive Hydrogels,” Materials Today, Vol. 8, 2005, pp. 36-44.| doi:10.1016/S1369-7021(05)71223-2
[21] J. D. Kosmala, D. B. Henthorn and L. Brannon-Peppas, “Preparation of Interpenetrating Network of Gelatin and Dextran as Degradable Biomaterials,” Biomaterials, Vol. 21, 2002, pp. 2019-2023. doi:10.1016/S0142-9612(00)00057-0
[22] D. Chakrabarty, “Interpenetrating Polymer Networks: Engineering Properties and Morphology,” Polymer Gels and Networks, Vol. 6, 1998, pp. 191-204. doi:10.1016/S0966-7822(98)00011-2
[23] J. P. Chen and S. H. Chiu, “A Poly (N-Isopropylacrylamide -co-N-Acryloxysuccinimide-co-2-Hydroxyethyl Methacr- ylate) Composite Hydrogel Membrane for Urease Immobilization to Enhance Urea Hydrolysis Rate by Temperature Swing,” Enzyme and Microbial Technology, Vol. 26, 2000, pp. 359-367. doi:10.1016/S0141-0229(99)00181-7
[24] Z.Tong, L. Yuhai, Y. Shihuo and H. Zhongyi, “Superabsorbent Hydrogels as Carriers for the Controlled-Release of Urea: Experiments and a Mathematical Model Describing the Release Rate,” Biosystems Engineering, Vol. 102, 2009, pp. 44-50. doi:10.1016/j.biosystemseng.2008.09.027
[25] E. Karada?, ?. B. üzüm, D. Sarayd?n and O. Güven, “Dynamic Swelling Behavior of ?-Radiation Induced Polyelectrolyte Poly(AAm-co-CA) Hydrogels in Urea Solutions,” Interanational Journal of Pharmaceutics, Vol. 301, 2005, pp. 102-111. doi:10.1016/j.ijpharm.2005.05.026
[26] E. Karada?, ?. B. üzüm, D. Sarayd?n and O. Güven, “Swelling Characterization of ?-Radiation Induced CAMA Hydrogels in Urea Solutions,” Materials Design, Vol. 27, No. 7, 2006, pp. 576-584. doi:10.1016/j.matdes.2004.11.019
[27] A. Martinez-Ruvalcaba, J. C. Sanchez-Diaz, F. Becerra and L. E. Cruz-Barba, “Swelling Characterization and Drug Delivery Kinetics of Polyacrylamide-Co-Itaconic Acid/Chitosan Hydrogels,” Express Polym Letter, Vol. 3, 2009, pp. 25-32. doi:10.3144/expresspolymlett.2009.5
[28] Y. M. Mohan, P. S. K. Murthy and K. M. Raju, “Preparation and Swelling Behavior of Macroporous Poly (Acrylamide-Co-Sodium Methacrylate) Superab- sorbent Hydrogels,” Journal of Applied Polymer Science, Vol. 101, 2006, pp. 3202-3214. doi:10.1002/app.23277
[29] E. Karada? and ?. B. üzüm, “Sorption for Removing Lauths Violets in Aqueous Solutions by Chemically Crosslinked Poly (AAm-co-SA) Hydrogels,” Polymer Bulletin, Vol. 53, 2005, pp. 387-392. doi:10.1007/s00289-005-0351-z
[30] S. Durmaz and O. Okay, “Acrylamide/2-Acrylamido-2-Methylpropanesulfonic Acid Sodium Salt-Based Hydrogels: Synthesis and Characterization,” Polymer, Vol. 41, 2000, pp. 3693-3704. doi:10.1016/S0032-3861(99)00558-3
[31] S. ?avu? and G. Gürda?, “Competitive Heavy Metal Removal by Poly/2-Acrylamido-2-Methyl-1-Propane Sulfonic Acid-Co-Itaconic Acid),” Polymers for Advanced Technologies, Vol. 19, 2008, pp. 1209-1217. doi:10.1002/pat.1113
[32] S. Kundakc?, ?. B. üzüm and E. Karada?, “A New Composite Sorbent for Water and Dye Uptake: Highly Swollen Acrylamide/2-Acrylamido-2-Methyl-1-Propan- esulfonic Acid/Clay Hydrogels Crosslinked by 1, 4-Butane- diol Dimeth-Acrylate,” Polymer Composites, Vol. 30, 2009, pp. 29-37. doi:10.1002/pc.20524
[33] D. Sarayd?n, E. Karada?, Y. I??kver, N. ?ahiner and O. Güven, “The Influence of Preparation Methods on the Swelling and Network Properties of Acrylamide Hydrogels with Crosslinkers,” Journal of Macromoleculer Science, Part A – Pure and Applied Chemistry,Vol. A41, No. 4, 2004, pp. 419-431.
[34] S. J. Kim, S. J. Park and S. I. Kim, “Synthesis and Characterization of Interpenetrating Polymer Network Hydrogels Composed of Poly(Vinyl Alcohol) and Poly(N-Isopropylacrylamide),” Reactive Functional Polymers, Vol. 55, 2003, pp. 61-67. doi:10.1016/S1381-5148(02)00215-8
[35] N. A. Peppas and N. M. Franson, “The Swelling Interface Number as a Criterion for Prediction of Diffusional Solute Release Mechanisms in Swellable Polymers,” Journal of Polymer Science Polymer Physics Edition, Vol. 21, 1983, pp. 983-997. doi:10.1002/pol.1983.180210614
[36] T. ?aykara, S. Kiper and G. Demirel, “Thermosensitive Poly (N-Isopropilacrylamide-Co-Acrylamide) Hydrog- els: Synthesis, Swelling and Interaction with Ionic Surfactants,” European Polymer Journal, Vol. 42, 2006, pp. 348-355. doi:10.1016/j.eurpolymj.2005.07.006
[37] R. Dengre, M. Bajpai and S. K. Bajpai, “Release of Vitamin B12 from Poly (N-Vinyl-2-Pyrrolidione)-Crosslinked Polyacrylamide Hydrogels,” Journal of Applied Polymer Science, Vol. 76, 2000, pp. 1706-1714. doi:10.1002/(SICI)1097-4628(20000613)76:11<1706::AID-APP12>3.0.CO;2-W
[38] L. M. Schwarte and N. A. Peppas, “Novel Poly (Ethylene Glycol)-Grafted Cationic Hydrogels: Prepara- tion, Characterization and Diffusive Properties,” Polymer, Vol. 39, 1998, pp. 6057-6066. doi:10.1016/S0032-3861(98)00087-1
[39] N. ?ahiner, D. Sarayd?n, E. Karada? and O. Güven, “Swelling and Dye Adsorption Properties of Radiation Induced N-Vinyl-2-Pyrrolidone/Acrylonitrile Hydroge-ls,” Polymer Bulletin, Vol. 41, No. 3, 1998, pp. 371-378. doi:10.1007/s002890050376

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.