Amniotic membrane as a potent source of stem cells and a matrix for engineering heart tissue
Julio Cesar Francisco, Ricardo Correa Cunha, Rossana Baggio Simeoni, Luiz Cesar Guarita-Souza, Reginaldo Justino Ferreira, Ana Carolina Irioda, Carolina Maria C. Oliveira Souza, Garikipati Venkata Naga Srikanth, Soniya Nityanand, Juan Carlos Chachques, Katherine Athayde Teixeira de Carvalho
1Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Curitiba, Brazil 2Cell Therapy and Biotechnology in Regenerative Medicine Research Group, Pelé Pequeno Príncipe Institute, Curitiba, Brazil.
Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Curitiba, Brazil 2Cell Therapy and Biotechnology in Regenerative Medicine Research Group, Pelé Pequeno Príncipe Institute, Curitiba, Brazil.
Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Curitiba, BrazilFederal University of Technology, Curitiba, Brazil.
Cell Therapy and Biotechnology in Regenerative Medicine Research Group, Pelé Pequeno Príncipe Institute, Curitiba, Brazil.
Department of Hematology, Stem Cell Research Faculty, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, India.
Experimental Laboratory of Institute of Biological and Health Sciences, Pontificial Catholic University of Paraná (PUCPR), Rua Imaculada Concei??o, Curitiba, Brazil.
Laboratory of Biosurgical Research, Pompidou Hospital, University of Paris Descartes, Paris, France.
DOI: 10.4236/jbise.2013.612147   PDF    HTML     5,654 Downloads   9,231 Views   Citations

Abstract

Existing therapies for the treatment of chronic heart failure still have some limitations and there is a pressing need for the development of new therapeutic modalities. The amniotic membrane has been used for the treatment of various diseases, such as conjunctive defects; however, the mechanisms behind its repair functions are still unclear. Regenerative medicine is seeking newer alternatives and among them, biomaterials have emerged in recent years for developing and manipulating molecules, cells, tissues or organs grown in laboratories in order to replace human body parts. Many such materials have been used for this purpose, either synthetically or biologically, in order to provide new medical devices. This review provides a wider view of the regeneration potential of the use of amniotic membrane as a potential biomaterial to facilitate the implementation of new research in surgical procedures. Amniotic membrane appears to be an alternative source of stem cells as well as an excellent biomaterial for cell-based therapeutic applications in engineering heart tissue.

 

Share and Cite:

Francisco, J. , Cunha, R. , Simeoni, R. , Guarita-Souza, L. , Ferreira, R. , Irioda, A. , Souza, C. , Srikanth, G. , Nityanand, S. , Chachques, J. and de Carvalho, K. (2013) Amniotic membrane as a potent source of stem cells and a matrix for engineering heart tissue. Journal of Biomedical Science and Engineering, 6, 1178-1185. doi: 10.4236/jbise.2013.612147.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Chachques, J.C. (2011) Development of bioartificial myocardium using stem cells and nanobiotechnology templates. Cardiology Research and Practice, 2011, Article ID: 806795. http://dx.doi.org/10.4061/2011/806795
[2] Toda, A., Okabe, M., Yoshida, T. and Nikaido, T. (2007) The potential of amniotic membrane/amnion-derived cells for regeneration of various tissues. Journal of Pharmacology Sciences, 105, 215-218.
[3] Insausti, C.L., Blanquer, M., Bleda, P., Iniesta, P., Majado, M.J., Castellanos, G. and Moraleda, J.M. (2010) The amniotic membrane as a source of stem cells. Histology and Histopathology, 25, 91-98.
[4] Roubelakis, M.G., Trohatou, O. and Anagnou, N.P. (2012) Amniotic fluid and aminiotic membrane stem cells: Marker discovery. Stem Cells International, 2012, Article ID: 107836. http://dx.doi.org/10.1155/2012/107836
[5] Dobreva, M.P., Lhoest, L., Pereira, P.N., Umans, L., Camus, A., Lopes, S.M.C.S. and Zwijsen, A. (2012) Periostin as a biomarker of the amniotic membrane. Stem Cells International, 2012, Article ID: 987185.
http://dx.doi.org/10.1155/2012/987185
[6] Trelford, J.D. and Trelford-Sauder, M. (1979) The amnion in surgery, past and present. American Journal of Obstetrics & Gynecology, 134, 833-845.
[7] Kim, J.C. and Tseng, S.C. (1995) Transplantation of preserved human amniotic membrane for surface reconstruction in severely damaged rabbit corneas. Cornea, 14, 473-484.
http://dx.doi.org/10.1097/00003226-199509000-00006
[8] Lindenmair, A., Wolbank, S., Stadler, G., Meinl, A., Peterbauer-Scherb, A., Eibl, J., Polin, H., Gabriel, C., Griensven, M. and Redl, H. (2010) Osteogenic differentiation of intact human amniotic membrane. Biomaterials, 31, 8659-8665.
http://dx.doi.org/10.1016/j.biomaterials.2010.07.090
[9] Zimmermann, W.H. and Eschenhagen, T. (2003) Cardiac tissue engineering for replacement therapy. Heart Failure Reviews, 8, 259-269.
http://dx.doi.org/10.1023/A:1024725818835
[10] Akle, C.A., Adinolfi, M., Welsh, K.I., Leibowitz, S. and McColl, I. (1981) Immunogenicity of human amniotic epithelial cells after transplantation into volunteers. Lancet, 318, 1003-1005.
http://dx.doi.org/10.1016/S0140-6736(81)91212-5
[11] Kubo, M., Sonoda, Y., Muramatsu, R. and Usui, M. (2001) Immunogenicity of human amniotic membrane in experimental xenotransplantation. Investigative Ophthalmology & Visual Science, 42, 1539-1546.
[12] Niknejad, H., Peirovi, H., Jorjani, M., Ahmadiani, A., Ghanavi, J. and Seifalian, A.M. (2008) Properties of the amniotic membrane for potential use in tissue engineering. European Cells and Materials Journal, 15, 88-99.
[13] Zhang, D.G., Jiang, M.Y. and Miao, D.S. (2011) Transplanted human amniotic membrane-derived mesenchymal stem cells ameliorate carbon tetrachloride-induced liver cirrhosis in mouse. PLoS One, 6, Article ID: e16789.
[14] Lindenmair, A., Hatlapatka, T., Kollwig, G., Hennerbichler, S., Gabriel, C., Wolbank, S., Redl, H. and Kasper, C. (2012) Mesenchymal stem or stromal cells from amnion and umbilical cord tissue and their potential for clinical applications. Cells, 1, 1061-1088.
http://dx.doi.org/10.3390/cells1041061
[15] Davis, J.W. (1910) Skin transplantation with a review of 550 cases at the Johns Hopkins Hospital. Johns Hopkins Medical Journal, 15, 307.
[16] Roth, A.D. (1940) Plastic repair of conjunctival defects with fetal membrane. Archives of Ophthalmology, 23, 522-525.
http://dx.doi.org/10.1001/archopht.1940.00860130586006
[17] Sorsby, A. and Symons, H.M. (1946) Amniotic membrane grafts in caustic burns of the eye (Burns of the second degree). British Journal of Ophthalmology, 30, 337-345. http://dx.doi.org/10.1136/bjo.30.6.337
[18] Tseng, S.C., Prabhasawat, P., Barton, K., Gray, T. and Meller, D. (1998) Amniotic membrane transplantation with or without limbal allografts for corneal surface reconstruction in patients with limbal stem cell deficiency. Archives of Ophthalmology, 116, 431-441.
http://dx.doi.org/10.1001/archopht.116.4.431
[19] Azuara-Blanco, A., Pillai, C.T. and Dua, H.S. (1999) Amniotic membrane transplantation for ocular surface reconstruction. British Journal of Ophthalmology, 83, 399-402. http://dx.doi.org/10.1136/bjo.83.4.399
[20] Chen, H.J., Pires, R.T. and Tseng, S.C. (2000) Amniotic membrane transplantation for severe neurotrophic corneal ulcers. British Journal of Ophthalmology, 84, 826-833.
http://dx.doi.org/10.1136/bjo.84.8.826
[21] Mligiliche, N., Endo, K., Okamoto, K., Fujimoto, E. and Ide, C. (2002) Extracellular matrix of human amnion manufactured into tubes as conduits for peripheral nerve regeneration. Journal ofBiomedical Material Research, 63, 591-600. http://dx.doi.org/10.1002/jbm.10349
[22] Tamagawa, T., Ishiwata, I. and Saito, S. (2004) Establishment and characterization of a pluripotent stem cell line derived from human amniotic membranes and initiation of germ layers in vitro. Human Cell, 17, 125-130.
http://dx.doi.org/10.1111/j.1749-0774.2004.tb00028.x
[23] Lo, V. and Pope, E. (2009) Amniotic membrane use in dermatology. International Journal of Dermatology, 48, 935-940.
http://dx.doi.org/10.1111/j.1365-4632.2009.04173.x
[24] Zhao, P., Ise, H., Hongo, M., Ota, M., Konishi, I. and Nikaido, T. (2005) Human amniotic mesenchymal cells have some characteristics of cardiomyocytes. Transplantation, 79, 528-535.
http://dx.doi.org/10.1097/01.TP.0000149503.92433.39
[25] Tsuji, H., Miyoshi, S., Ikegami, Y., Hida, N., Asada, H., Togashi, I., Suzuki, J., Satake, M., Nakamizo, H., Tanaka, M., Mori, T., Segawa, K., Nishiyama, N., Inoue, J., Makino, H., Miyado, K., Ogawa, S., Yoshimura, Y. and Umezawa, A. (2010) Xenografted human amniotic membrane-derived mesenchymal stem cells are immunologically tolerated and transdifferentiated into cardiomyocytes. Circulation Research, 106, 1613-1623.
http://dx.doi.org/10.1161/CIRCRESAHA.109.205260
[26] Dual, H.S. and Azuara-Blanco, A. (1999) Amniotic membrane transplantation. British Journal of Ophthalmology, 83, 748-752. http://dx.doi.org/10.1136/bjo.83.6.748
[27] Wynn, R.M. and Corbett, J.R. (1969) Ultrastructure of the canine placenta and amnion. American Journal of Obstetrics & Gynecology, 103, 878-887.
[28] Segev, A., Nili, N. and Strauss, B.H. (2004) The role of perlecan in arterial injury and angiogenesis. Cardiovascular Research, 63, 603-610.
http://dx.doi.org/10.1016/j.cardiores.2004.03.028
[29] Sachs, B.P. and Stern, C.M. (1979) Activity and characterization of a low molecular fraction present in human amniotic fluid with broad spectrum antibacterial activity. British Journal of Obstetrics & Gynecology, 86, 81-86.
http://dx.doi.org/10.1111/j.1471-0528.1979.tb10572.x
[30] Kim, J.C. and Tseng, S.C. (1995) The effects on inhibition of corneal neovascularization after human amniotic membrane transplantation in severely damaged rabbit corneas. Korean Journal of Ophthalmology, 9, 32-46.
[31] Krisanaprakornkit, S., Weinberg, A., Perez, C.N. and Dale, B.A. (1998) Expression of the peptide antibiotic human beta-defensin 1 in cultured gingival epithelial cells and gingival tissue. Infection and Immunity, 66, 4222-4228.
[32] Talmi, Y.P., Sigler, L., Inge, E., Finkelstein, Y. and Zohar, Y. (1991) Antibacterial properties of human amniotic membranes. Placenta, 12, 285-288.
http://dx.doi.org/10.1016/0143-4004(91)90010-D
[33] Dua, H.S., Gomes, J.A., King, A.J. and Maharajan, V.S. (2004) The amniotic membrane in ophthalmology. Survey of Ophthalmology, 49, 51-77.
http://dx.doi.org/10.1016/j.survophthal.2003.10.004
[34] Cen, L., Liu, W., Cui, W., Zhang, W. and Cao, Y. (2008) Collagen tissue engineering: Development of novel biomaterials and applications. Pediatric Research, 63, 492-496. http://dx.doi.org/10.1203/PDR.0b013e31816c5bc3
[35] Koizumi, N., Fullwood, N.J., Bairaktaris, G., Inatomi, T., Kinoshita, S. and Quantock, A.J. (2000) Cultivation of corneal epithelial cells on intact and denuded human amniotic membrane. Investigative Ophthalmology & Visual Science, 41, 2506-2513.
[36] Hopper, R.A., Woodhouse, K. and Semple, J.L. (2003) Acellularization of human placenta with preservation of the basement membrane: A potential matrix for tissue engineering. Annals of Plastic Surgery, 51, 598-602.
http://dx.doi.org/10.1097/01.sap.0000095658.46675.76
[37] Shortt, A.J., Secker, G.A., Lomas, R.J., Wilshaw, S.P., Kearney, J.N., Tuft, S.J. and Daniels, J.T. (2008) The effect of amniotic membrane preparation method on its ability to serve as a substrate for the ex-vivo expansion of limbal epithelial cells. Biomaterials, 30, 1056-1065.
http://dx.doi.org/10.1016/j.biomaterials.2008.10.048
[38] Bigbie, R.B., Schumacher, J., Swaim, S.F., Purohit, R.C. and Wright, J.C. (1991) Effects of amnion and live yeast cell derivative on second-intention healing in horses. American Journal of Veterinary Research, 52, 1376-1382.
[39] Solomon, A., Rosenblatt, M., Monroy, D., Ji, Z., Pflugfelder, S.C. and Tseng, S.C. (2001) Suppression of interleukin 1alpha and interleukin 1beta in human limbal epithelial cells cultured on the amniotic membrane stromal matrix. British Journal of Ophthalmology, 85, 444-449. http://dx.doi.org/10.1136/bjo.85.4.444
[40] Hao, Y., Ma, D.H., Hwang, D.G., Kim, W.S. and Zhang, F. (2000) Identification of antiangiogenic and antiinflammatory proteins in human amniotic membrane. Cornea, 19, 348-352.
http://dx.doi.org/10.1097/00003226-200005000-00018
[41] Díaz-Prado, S., Muinos-López, E., Hermida-Gomez, T., Rendal-Vazquez, M.E., Fuentes-Boquete, I., de Toro, F.J. and Blanco, F.J. (2011) Isolation and characterization of mesenchymal stem cells from human amniotic membrane. Tissue Engineering Part C: Methods, 17, 49-59.
http://dx.doi.org/10.1089/ten.tec.2010.0136
[42] Ilancheran, S., Moodley, Y. and Manuelpillai, U. (2009) Human fetal membranes: A source of stem cells for tissue regeneration and repair? Placenta, 30, 2-10.
http://dx.doi.org/10.1016/j.placenta.2008.09.009
[43] Parolini, O., Soncini, M., Evangelista, M. and Schmidt, D. (2009) Amniotic membrane and amniotic fluid-derived cells: Potential tools for regenerative medicine? Regenerative Medicine, 4, 275-291.
http://dx.doi.org/10.2217/17460751.4.2.275
[44] Niknejad, H., Peirovi, H., Jorjani, M., Ahmadiani, A., Ghanavi, J. and Seifalian, A.M. (2009) Properties of the amniotic membrane for potential use in tissue engineering. European Cells & Materials Journal, 15, 88-99.
[45] Insausti, C.L., Blanquer, M., Bleda, P., Iniesta, P., Majado, M.J., Castellanos, G. and Moraleda, J.M. (2010) The amniotic membrane as a source of stem cells. Histology and Histopathology, 25, 91-98.
[46] Kobayashi, M., Yakuwa, T., Sasaki, K., Sato, K., Kikuchi, A., Kamo, I., Yokoyama, Y. and Sakuragawa, N. (2008) Multilineage potential of side population cells from human amnion mesenchymal layer. Cell Transplantion, 17, 291-301. http://dx.doi.org/10.3727/096368908784153904
[47] Mihu, C.M., RusCiuca, D., Soritau, O., Susman, S. and Mihu, D. (2009) Isolation and characterization of mesenchymal stem cells from the amniotic membrane. Romanian Journal of Morphology and Embryology, 50, 73-77.
[48] Miki, T. and Strom, S.C. (2006) Amnion-derived pluripotent/multipotent stem cells. Stem Cell Reviews, 2, 133-142. http://dx.doi.org/10.1007/s12015-006-0020-0
[49] Paracchini, V., Carbone, A., Colombo, F., Castellani, S., Mazzucchelli, S., Di Gioia, S., Degiorgio, D., Seia, M., Porretti, L., Colombo, C. and Conese, M. (2012) Amniotic mesenchymal stem cells: A new source for hepatocytelike cells and induction of CFTR expression by coculture with cystic fibrosis airway epithelial cells. Journal of Biomedicine and Biotechnology, 2012, Article ID: 575471.
http://dx.doi.org/10.1155/2012/575471
[50] Miki, T., Lehmann, T., Cai, H., Stolz, D.B. and Strom, S.C. (2005) Stem cell characteristics of amniotic epithelial cells. Stem Cells, 23, 1549-1559.
http://dx.doi.org/10.1634/stemcells.2004-0357
[51] Portmann-Lanz, C.B., Schoeberlein, A., Huber, A., Sager, R., Malek, A., Holzgreve, W. and Surbek, D.V. (2006) Placental mesenchymal stem cells as potential autologous graft for preand perinatal neuroregeneration. American Journal of Obstetrics & Gynecology, 194, 664-673.
http://dx.doi.org/10.1016/j.ajog.2006.01.101
[52] Kara, R.J., Bolli, P., Karakikes, I., Matsunaga, I., Tripodi, J., Tanweer, O., Altman, P., Shachter, N.S., Nakano, A., Najfeld, V. and Chaudhry, H.W. (2012) Fetal cells traffic to injured maternal myocardium and undergo cardiac differentiation. Circulation Research, 110, 82-93.
http://dx.doi.org/10.1161/CIRCRESAHA.111.249037
[53] Choi, T.H. and Tseng, S.C. (2001) In Vivo and in Vitro demonstration of epithelial cell-induced myofibroblast differentiation of keratocytes and an inhibitory effect by amniotic membrane. Cornea, 20, 197-204.
http://dx.doi.org/10.1097/00003226-200103000-00019
[54] Mejia, L.F., Santamaria, J.P. and Acosta, C. (2002) Symptomatic management of postoperative bullous keratopathy with nonpreserved human amniotic membrane. Cornea, 21, 342-345.
http://dx.doi.org/10.1097/00003226-200205000-00002
[55] Nakamura, T., Sekiyama, E., Takaoka, M., Bentley, A.J., Yokoi, N., Fullwood, N.J. and Kinoshita, S. (2008) The use of trehalose-treated freeze-dried amniotic membrane for ocular surface reconstruction. Biomaterials, 29, 3729-3737.
http://dx.doi.org/10.1016/j.biomaterials.2008.05.023
[56] Wilshaw, S.P., Kearney, J.N., Fisher, J. and Ingham, E. (2006) Production of an acellular amniotic membrane matrix for use in tissue engineering. Tissue Engineering, 12, 2117-2129. http://dx.doi.org/10.1089/ten.2006.12.2117
[57] Souza, C.E.B., Engel, D.P., Branco, B.C., Hofling-Lima, A.L., Freitas, D., Gomes, J.A.P. and Souza, L.B. (2004) Evaluation of microbiological contamination of amniotic membrane and amniotic fluid. Arquivos Brasileiros de Oftalmologia, 67, 709-712.
http://dx.doi.org/10.1590/S0004-27492004000500003
[58] Cargnoni, A., Di Marcello, M., Campagnol, M., Nassuato, C., Albertini, A. and Parolini, O. (2009) Amniotic membrane patching promotes ischemic rat heart repair. Cell Transplantation, 18, 1147-1159.
http://dx.doi.org/10.3727/096368909X12483162196764
[59] Fujimoto, K.L., Miki, T., Liu, L.J., Hashizume, R., Strom, S.C., Wagner, W.R., Keller, B.B. and Tobita, K. (2009) Naive rat amnion-derived cell transplantation improved left ventricular function and reduced myocardial scar of postinfarcted heart. Cell Transplantation, 18, 477-486.
http://dx.doi.org/10.3727/096368909788809785
[60] Lionetti, V., Cantoni, S., Cavallini, C., Bianchi, F., Valente, S., Frascari, I., Olivi, E., Aquaro, G.D., Bonavita, F., Scarlata, I., Maioli, M., Vaccari, V., Tassinari, R., Bartoli, A., Recchia, F.A., Pasquinelli, G. and Ventura, C. (2010) Hyaluronan mixed esters of butyric and retinoic acid affording myocardial survival and repair without stem cell transplantation. The Journal of Biological Chemistry, 285, 9949-9961. http://dx.doi.org/10.1074/jbc.M109.087254
[61] Matsunaga, S., Uchide, N., Shono, M., Ohyama, K., Takeichi, M. and Toyoda, H. (2013) Differences in permissive cytomegalovirus infection between primary cultured human fetal membrane chorion and amnion cells. Biological and Pharmaceutical Bulletin, 36, 1715-1721.
http://dx.doi.org/10.1248/bpb.b13-00200

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.