Detection of 16S rRNA Methylase Genes in Gram-Negative Bacilli Isolated from Hospitals in Changchun, China

Abstract

Methylation of 16S rRNA is an important mechanism of aminoglycoside resistance among gram-negative pathogens. In this report, 16S rRNA methylase genes were amplified using PCR among gram-negative bacillus isolates from hospitals in the Changchun area of China and 16S rRNA methylase genotypes (armA, rmtB, rmtA, rmtC, rmtD, and npmA) were identified by direct sequencing. Fifty of the isolates (43.1%) harbored 16S rRNA methylase genes. The common 16S rRNA methylase genes were armA and rmtB (12.1% and 31.0%, respectively), whereas the rmtA, rmtC, rmtD, and npmA genes were absent from the sample. It suggests that the predominant 16S rRNA methylase genes among gramnegative bacilli in the Changchun area are armA and rmtB.

 

Share and Cite:

F. Zhao, H. Shi, J. Li, J. Zhou and Y. Sun, "Detection of 16S rRNA Methylase Genes in Gram-Negative Bacilli Isolated from Hospitals in Changchun, China," Advances in Infectious Diseases, Vol. 3 No. 4, 2013, pp. 290-294. doi: 10.4236/aid.2013.34044.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] K. Yokoyama, Y. Doi, K. Yamane, H. Kurokawa, N. Shibata, K. Shibayama, T. Yagi, H. Kato and Y. Arakawa, “Acquisition of 16S rRNA Methylase Gene in Pseudomonas Aeruginosa,” Lancet, Vol. 362, No. 9399, 2003, pp. 1888-1893. http://dx.doi.org/10.1016/S0140-6736(03)14959-8
[2] B. Bercot, L. Poirel and P. Nordmann, “Plasmid-Mediated 16S rRNA Methylases among Extended-Spectrum βLactamase-Producing Enterobateriaceae Isolates,” Antimicrobial Agents and Chemotherapy, Vol. 52 No. 12, 2008, pp. 4526-4527.
http://dx.doi.org/10.1128/AAC.00882-08
[3] M. Galimand, P. Courvalin and T. Lambert, “PlasmidMediated High Level Resistance to Aminoglycoside in Enterobacteriaceae Due to 16S rRNA Methylation,” Antimicrobial Agents and Chemotherapy, Vol. 47, No. 8, 2003, pp. 2565-2571.
http://dx.doi.org/10.1128/AAC.47.8.2565-2571.2003
[4] J. Wachino, K. Yamane, K, Shibayama, H. Kurokawa, N. Shibata, S. Suzuki, Y. Doi, K. Kimura, Y. Ike and Y. Arakawa, “Novel Plasmid-Mediated 16S rRNA Methylase, rmtC, Found in a Proteous Mirabilis Isolate Demonstrating Extraordinary High-Level Resistance against Various Aminoglycosides,” Antimicrobial Agents and Chemotherapy, Vol. 50, No. 1, 2006, pp. 178-184.
http://dx.doi.org/10.1128/AAC.50.1.178-184.2006
[5] K. Yamane, J. Wachino, Y. Doi, H. Kurokawa and Y. Arakawa, “Global Spread of Multiple Aminoglycoside Genes,” Emerging Infectious Disease, Vol. 11, No. 6, 2005, pp. 951-953. http://dx.doi.org/10.3201/eid1106.040924
[6] F. Yu, L. Wang, J. Pan, D. Yao, C. Chen, T. Zhu, Q. Lou, J. Hu, Y. Wu, X. Zhang, Z. Chen and D. Qu, “Prevalence of 16S rRNA Methylase Genes in Klebsiella Pneumoniae Isolates from a Chinese Teaching Hospital: Coexistence of rmtB and armA Genes in the Same Isolate,” Diagnostic Microbiology and Infectious Disease, Vol. 64, No. 1, 2009, pp. 57-63.
http://dx.doi.org/10.1016/j.diagmicrobio.2009.01.020
[7] B. Li, X. Zhang, J. Li and Y. Sun, “Genotypes and Distribution of Extended-Spectrum β-Lactamases in Gram-Negative Bacilli Isolated from Changchun Area,” Journal of Jilin University (Medicine Edition), Vol. 36, No. 1, 2010, pp. 205-209.
[8] J. Zhu, D. Xiao, R. Jiang and K. Wu, “Investigation of Aminoglycoside Modifying Enzyme Genes and 16S rRNA Methylase Genes in Multidrug Resistant Klebsiella Pneumoniae,” Chinese Journal of Nosocomiology, Vol. 22, No. 17, 2012, pp. 3690-3693.
[9] Y. Deng, Z. Zeng, S. Chen, L. He, Y. Liu, C. Wu, Z. Chen, Q. Yao, J. Hou, T. Yang and J. Liu, “Dissemination of IncFII Plasmids Carring rmtB and qepA in Escherichia coli from Pigs, Farm Workers and the Environment,” Clinical Microbiology and Infection, Vol. 17, No. 11, 2011, pp. 1740-1745.
http://dx.doi.org/10.1111/j.1469-0691.2011.03472.x
[10] L. Kotra, J. Haddad and S. Mobashery, “Aminoglyeosides: Perspectives on Mechanisms of Action and Resistance and Strategies to Counter Resistance,” Antimicrobial Agents and Chemotherapy, Vol. 44, No. 12, 2000, pp. 3249-3256. http://dx.doi.org/10.1128/AAC.44.12.3249-3256.2000
[11] S. Islam, H. Oh, S. Jalal, F. Karpati, O. Ciofu, N. Høiby and B Wretlind, “Chromosomal Mechanisms of Aminoglycoside Resistance in Pseudomonas Aeruginosa Isolates from Cystic Fibrosis Patients,” Clinical Microbiology and Infection, Vol. 15, No. 1, 2009, pp. 60-66.
http://dx.doi.org/10.1111/j.1469-0691.2008.02097.x
[12] E. Macfarlan, E. Kwasnicka and R. Hancock, “Role of Pseudomonas Aeruginosa PhoP-PhoQ in Resistance to Antimicrobial Cationic Peptides and Aminoglycosides,” Microbiology, Vol. 146, No. 10, 2000, pp. 2543-2554.
[13] Y. Doi, A. C. Ghilardi, J. Adams, D. de Olivera Garcia and D. L. Paterson, “High Prevalence of Metallo-β-Lactamase and 16SrRNA Methylase Coproduction among Imipenem-Resistant Pseudomonas Aeruginosa Isolates in Brazil,” Antimicrobial and Agents Chemotherapy, Vol. 51, No. 9, 2007, pp. 3388-3390.
http://dx.doi.org/10.1128/AAC.00443-07
[14] J. Wachino and Y. Arakawa., “Exogenously Acquired 16S rRNA Methyltransferases Found in Aminoglycoside-Resistant Pathogenic Gram-Negative Bacteria: An Update,” Drug Resistance Updates, Vol. 15, No. 3, 2012, pp. 133-148. http://dx.doi.org/10.1016/j.drup.2012.05.001
[15] Y. J. Park, “Aminoglycoside Resistance in Gram-Negative Bacilli,” Korean Journal of Clinical Microbiology, Vol. 12, No. 2, 2009, pp. 57-61.
http://dx.doi.org/10.5145/KJCM.2009.12.2.57
[16] J. Cui, S. Zhao, Y. Qin, T. Gao, X. Wang and G. Feng, “Investigation of Related Genes of Aminoglycoside Resistant on Multi-drug Resistance Pseudomonas Aeruginosa,” Chinese Journal of Nosocomiology, Vol. 20, No. 20, 2010, pp. 3099-3012.
[17] Y. Li, Y. Wu, H. Li and Y. Yang, “Investigation of 16S rRNA Methylase Genes in Gentamicin-Resistant Enterobacter Cloacae,” Chinese Journal of Microecology, Vol. 23, No. 7, 2011, pp. 612-614.
[18] M. Gurung, D. C. Moon, M. D. Tamang, J. Kim, Y. C. Lee, S. Y. Seol, D. T. Cho and J. C. Lee, “Emergence of 16S rRNA Methylase Gene armA and Cocarriage of blaIMP-1 in Pseudomonas Aeruginosa Isolates from South Korea,” Diagnostic Microbiology and Infectious Disease, Vol. 68, No. 4, 2010, pp. 468-470.
http://dx.doi.org/10.1016/j.diagmicrobio.2010.07.021
[19] Y. Doi, K. Yokoyama, K. Yamane, J. Wachino, N. Shibata, T. Yagi, K. Shibayama, H. Kato and Y Arakawa, “Plasmid-Mediated 16S rRNA Methylase in Serratia Marcescens Conferring High-Level Resistance to Aminoglycosides,” Antimicrobial Agents and Chemotherapy, Vol. 48, No. 2, 2004, pp. 491-496.
http://dx.doi.org/10.1128/AAC.48.2.491-496.2004
[20] P. Bogaerts, M. Galimand, C. Bauraing, A. Deplano, R. Vanhoof, R. De Mendonca, H. Rodriquenz-Villalobos, M. Struelens and Y Glupczynski, “Emergence of ArmA and RmtB Aminoglycoside Resistance 16S rRNA Methylases in Belgium,” Journal of Antimicrobial Chemotherapy, Vol. 59, No. 3, 2007, pp. 459-464.
http://dx.doi.org/10.1093/jac/dkl527
[21] S. Sabtcheva, T. Saga, T. Kantardjiev, M. Ivanova, Y. Ishii and M. Kaku, “Nosocomial Spread of Arma-Mediated High-Level Aminoglycoside Resistance in Enterobacteriaceae Isolates Producing CTX-M-3 Beta-Lactamase in a Cancer Hospital in Bulgaria,” Journal of Chemotherapy, Vol. 20, No. 5, 2008, pp. 593-599.
[22] Y. Doi, G. Oliveira, J. Adams and D. L. Paterson, “Coproduction of Novel 16S rRNA Methylase RmtD and Metallo-β-Lactamase SPM-1 in a Panresistant Pseudomonas Aeruginosa Isolate from Brazil,” Antimicrobial Agents and Chemothearapy, Vol. 51, No. 3, 2007, pp. 852-856.
http://dx.doi.org/10.1128/AAC.01345-06

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.