High-Resolution Broadband Millimeter-Wave Astrophysical Spectrometer with Triple Product Acousto-Optical Processor

Download Download as PDF (Size:485KB)  HTML   XML  PP. 421-430  
DOI: 10.4236/ijaa.2013.34050    2,429 Downloads   4,069 Views   Citations


An advanced conceptual design of a high-bit-rate triple product acousto-optical processor is presented that can be applied in a number of astrophysical problems. We briefly describe the Large Millimeter Telescope as one of the potential observational infrastructures where the acousto-optical spectrometer can be successfully used. A summary on the study of molecular gas in relatively old (age > 10 Myr) disks around main sequence stars is provided. We have identified this as one of the science cases in which the proposed processor can have a big impact. Then we put forward triple product acousto-optical processor is able to realize algorithm of the space-and-time integrating, which is desirable for a wideband spectrum analysis of radio-wave signals with an improved resolution providing the resolution power of about 105 - 106. It includes 1D-acousto-optic cells as the input devices for a 2D-optical data processing. The importance of this algorithm is based on exploiting the chirp Z-transform technique providing a 2D-Fourier transform of the input signals. The system produces the folded spectrum, accumulating advantages of both space and time integrating. Its frequency bandwidth is practically equal to the bandwidth of transducers inherent in acousto-optical cells. Then, similar processor is able to provide really high frequency resolution, which is practically equal to the reciprocal of the CCD-matrix photo-detector integration time. Here, the current state of developing the triple product acousto-optical processor in frames of the astrophysical instrumentation is shortly discussed.

Cite this paper

M. Dagostino, A. Shcherbakov, A. Arellanes and V. Chavushyan, "High-Resolution Broadband Millimeter-Wave Astrophysical Spectrometer with Triple Product Acousto-Optical Processor," International Journal of Astronomy and Astrophysics, Vol. 3 No. 4, 2013, pp. 421-430. doi: 10.4236/ijaa.2013.34050.


[1] M. L. Heger, “Further Study of the Sodium Lines in Class B Stars,” Lick Observatory Bulletin, Vol. 10, No. 337, 1922, pp. 141-145.
[2] G. H. Herbig, “The Diffuse Interstellar Bands. IV. The Region 4400-6850 A,” Astrophysical Journal, Vol. 196, Pt. 1, 1975, pp. 129-160. http://dx.doi.org/10.1086/153400
[3] L. Spitzer, J. F. Drake, E. B. Jenkins, D. C. Morton, J. B. Rogerson and D. G. York, “Spectrophotometric Results from the Copernicus Satellite. IV. Molecular Hydrogen in Interstellar Space,” Astrophysical Journal, Vol. 181, 1973, p. L116. http://dx.doi.org/10.1086/181197
[4] E. B. Jenkins, J. F. Drake, D. C. Morton, J. B. Rogerson, L. Spitzer and D. G. York, “Spectrophotometric Results from the Copernicus Satellite. V. Abundances of Molecules in Interstellar Clouds,” Astrophysical Journal, Vol. 181, 1973, p. L122. http://dx.doi.org/10.1086/181198
[5] P. Solomon, K. B. Jefferts, A. A. Penzias and R. W. Wilson, “Observation of CO Emission at 2.6 Millimeters from IRC+10216,” Astrophysical Journal, Vol. 163, 1971, p. L53. http://dx.doi.org/ 10.1086/180665
[6] K. B. Jefferts, A. A. Penzias and R. W. Wilson, “Observation of the CN Radical in the Orion Nebula and W51,” Astrophysical Journal, Vol. 161, 1973, p. L87. http://dx.doi.org/10.1086/180576
[7] M. R. Swain, G. Tinetti, G. Vasisht, P. Deroo, et al. “Water, Methane, and Carbon Dioxide Present in the Dayside Spectrum of the Exoplanet HD 209458b,” The Astrophysical Journal, Vol. 704, No. 2, 2009, pp. 16161621. http://dx.doi.org/10.1088/0004-637X/704/2/1616
[8] C. R. Masson, “A Stable Acousto-Optical Spectrometer for Millimeter Radio Astronomy,” Astronomy and Astrophysics, Vol. 114, 1982, pp. 270-274.
[9] G. W. Schwaab, K. Meyer, H. P. Roeser, P. van der Wal, R. Wattenbach, “A 1 GHz Bandwidth Acousto-Optical Spectrometer for Airborne Submillimetre Astronomy,” Journal of Physics E—Scientific Instruments, Vol. 22, No. 7, 1989, pp. 510-514. http://dx.doi.org/10.1088/0022-3735/22/7/018
[10] A. Lecacheux, C. Rosolen, P. Dierich and G. Paubert, “Acousto-Optical Spectrometers for Broadband Millimeter Radioastronomy at I.R.A.M.,” International Journal of Infrared and Millimeter Waves, Vol. 14, No. 2, 1993, pp. 169-184. http://dx.doi.org/10.1007/BF02282063
[11] J. Horn, O. Siebertz, F. Schmülling, C. Kunz, R. Schieder, G. Winnewisser, “A 4 × 1 GHz Array Acousto-Optical Spectrometer,” Experimental Astronomy, Vol. 9, No. 1, 1998, pp. 17-38.
[12] T. de Graauw, F. P. Helmich, T. G. Phillips, J. Stutzki, E. Caux, N. D. Whyborn, et al., “The Herschel-Heterodyne Instrument for the Far-Infrared (HIFI),” Astronomy and Astrophysics, Vol. 518, 2010, p. L6. http://dx.doi.org/10.1051/0004-6361/201014698
[13] B. Tercero, J. Cernicharo, J. R. Pardo and J. R. Goicoechea, “A Line Confusion Limited Millimeter Survey of Orion KL. I. Sulfur Carbon Chains,” Astronomy and Astrophysics, Vol. 517, 2010, p. A96. http://dx.doi.org/10.1051/0004-6361/200913501
[14] M. Chavez, D. Hughes and LMT Project Team, “The Large Millimeter Telescope and Solar Like Stars, New Quests in Stellar Astrophysics III: A Panchromatic View of Solar-Like Stars, With and Without Planets,” M. Chavez, E. Bertone, O. Vega and V. De la Luz, Eds., Proceedings of an International Conference held at Puerto Vallarta, Astronomical Society of the Pacific, San Francisco, 2013, pp. 279-289.
[15] G. Narayanan, M. H. Heyer, C. Brunt, P. F. Goldsmith, R. Snell and D. Li, “The Five College Radio Astronomy Observatory CO Mapping Survey of the Taurus Molecular Cloud,” The Astrophysical Journal Supplement Series, Vol. 177, No. 1, 2008, pp. 341-361. http://dx.doi.org/10.1086/587786
[16] M. Wyatt, “Evolution of Debris Disks,” Annual Review of Astronomy and Astrophysics, Vol. 46, 2008, pp. 339-383. http://dx.doi.org/10.1146/annurev.astro.45.051806.110525
[17] J. Williams and L. Cieza, “Protoplanetary Disks and Their Evolution,” Annual Review of Astronomy and Astrophysics, Vol. 49, 2011, pp. 67-117. http://dx.doi.org/10.1146/annurev-astro-081710-102548
[18] A. Roberge, et al. “High-Resolution Hubble Space Telescope STIS Spectra of CI and CO in the β Pictoris Circumstellar Disk,” Astrophysical Journal, Vol. 538, No. 2, 2000, pp. 904-910.
[19] B. Zuckerman, et al. “Inhibition of Giant-Planet Formation by Rapid Gas Depletion around Young Stars,” Nature, Vol. 373, No. 6514, 1995, pp. 494-496. http://dx.doi.org/10.1038/373494a0
[20] W. R. F. Dent, J. Greaves and I. M. Coulson, “CO Emission from Discs around Isolated HAeBe and Vega-Excess Stars,” Monthly Notices of the Royal Astronomical Society, Vol. 359, No. 2, 2005, pp. 663-676. http://dx.doi.org/10.1111/j.1365-2966.2005.08938.x
[21] A. Grigorieva, et al. “Survival of Icy Grains in Debris Discs. The Role of Photosputtering,” Astronomy & Astrophysics, Vol. 475, No. 2, 2007, pp. 755-764. http://dx.doi.org/10.1051/0004-6361:20077686
[22] D. Psaltis, “Two-Dimensional Optical Processing Using One-Dimensional Input Devices,” Proceedings of the IEEE, Vol. 72, No. 7, 1984, pp. 962-974. http://dx.doi.org/10.1109/PROC.1984.12952
[23] R. W. Klein and B. D. Cook, “A Unified Approach to Ultrasonic Light Diffraction,” IEEE Transactions on Sonics and Ultrasonics, Vol. 14, No. 3, 1967, pp. 123-134. http://dx.doi.org/10.1109/T-SU.1967. 29423
[24] T. Bader, “Acousto-Optic Spectrum Analysis. A High Performance Hybrid Technique,” Applied Optics, Vol. 18, No. 10, 1979, pp. 1668-1672. http://dx.doi.org/10.1364/AO.18.001668
[25] D. Psaltis and D. Casasent, “Time-and-Space Integrating Spectrum Analyzer,” Applied Optics, Vol. 18, No. 19, 1979, pp. 3203-3204. http://dx.doi.org/10.1364/AO.18.003203
[26] P. Kellman, “Time Integrating Optical Processing,” Ph.D. Thesis, Stanford University, Stanford, 1979.
[27] Т. M. Turpin, “Time Integrating Optical Processing,” Proceedings of SPIE, Vol. 154, 1978, pp. 196-203. dx.doi.org/10.1117/12.938255
[28] A. Korpel, “Acousto-Optics,” Marcel Dekker, New York, 1997.
[29] D. R. Pape, O. B. Gusev, S. V. Kulakov and V. V. Molotok, “Chapter 2. Design of Acousto-Optic Deflectors,” In: A. P. Goutzoulis and D. R. Pape, Eds., Design and Fabrication of Acousto-Optic Devices, Marcel Dekker, New York, 1994, pp. 69-122.
[30] L. W. J. Kent, “3 GHz Bandwidth Rutile Bragg Cell,” Proceedings of SPIE, Vol. 7100, 2008, Article ID: 710027-1. http://dx.doi.org/10.1117/12.803620

comments powered by Disqus

Copyright © 2017 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.