Development of Cockleshell-Derived CaCO3 for Flame Retardancy of Recycled PET/Recycled PP Blend
Supaphorn Thumsorn, Kazushi Yamada, Yew Wei Leong, Hiroyuki Hamada
.
DOI: 10.4236/msa.2011.22009   PDF    HTML     6,342 Downloads   11,792 Views   Citations

Abstract

Recycled polyethylene terephthalate (RPET) and recycle polypropylene (RPP) blends filled with a renewable filler, i.e. cockleshell-derived CaCO3 (CS) were prepared as an environmental friendly thermoplastic composite. The effects of CS particle size and content on thermal stability, mechanical performance and flame retardant properties of the blends were investigated. Thermogravimetric analysis was performed to elucidate the thermal decomposition kinetics of the filled composites. The iso-conversion of the Flynn-Wall-Ozawa was developed by the second order polynomial function for thermal oxidative degradation of the blends while peak derivative temperature from the Kissinger method was able to verify the mechanism of degradation in these blends. The results indicated that both CS and commercial grade CaCO3 improved thermal stability and enhanced the stiffness as well as impact performance of the blends. However, this could only be achieved when high filler content was present in the RPET/RPP blends.

Share and Cite:

S. Thumsorn, K. Yamada, Y. Leong and H. Hamada, "Development of Cockleshell-Derived CaCO3 for Flame Retardancy of Recycled PET/Recycled PP Blend," Materials Sciences and Applications, Vol. 2 No. 2, 2011, pp. 59-69. doi: 10.4236/msa.2011.22009.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. Heino, J. Kirjava, P. Hietaoja and J. Sepp?l?, “Compatibilization of Polyethylene Terephthalate/Polypropylene Blends with Styrene-Ethylene/Butylene-Styrene (SEBS) Block Copolymers,” Journal of Applied Polymer Science, Vol. 65, No. 2, 1997, pp. 241-249. doi:10.1002/(SICI)1097-4628(19970711)65:2<241::AID-APP4>3.0.CO;2-O
[2] Y. X. Pang, D. M. Jia, H. J. Hu, D. J. Hourston and M. Song, “Effects of a Compatibilizing Agent on the Morphology, Interface and Mechanical Behaviour of Polypropylene/Poly (Ethylene Terephthalate) Blends,” Polymer, Vol. 41, No. 1, 2000, pp. 357-365. doi:10.1016/S0032-3861(99)00123-8
[3] C. P. Papadopoulou and N. K. Kalfoglou, “Comparison of Compatibilizer Effectiveness for PET/PP Blends: Their Mechanical, Thermal and Morphology Characterization,” Polymer, Vol. 41, No. 7, 2000, pp. 2543-2555. doi:10.1016/S0032-3861(99)00442-5
[4] N. H. de Leeuw and S. C. Parker, “Surface Structure and Morphology of Calcium Carbonate Polymorphs Calcite, Aragonite, and Vaterite: An Atomistic Approach,” The Journal of Physical Chemistry B, Vol. 102, No. 16, 1998, pp. 2914-2922. doi:10.1021/jp973210f
[5] R. Gachter and H. Muller, “Plastics Additives Handbook,” Hanser Publishers, Munich, 1990.
[6] K. M. Wilbur, “Physiology of Mollusca: Volume 1,” Academic Press, New York, 1964.
[7] S. Keiko, Y. Tomohiko and T. Masami, “Synthesis of Aragonite from Calcined Scallop Shells at Ambient Temperatures and Their Morphological Characterization by FE-SEM,” Shigen-to-Sozai, Vol. 118, No. 8, 2002, pp. 553-558. doi:10.2473/shigentosozai.118.553
[8] P. Budrugeac, “Application of Model-Free and Multivariate Non-Linear Regression Methods for Evaluation of the Thermo-Oxidative Endurance of a Recent Manufactured Parchment,” Journal of Thermal Analysis and Calorimetry, Vol. 97, No. 2, 2009, pp. 443-451. doi:10.1007/s10973-009-0081-9
[9] D. S. Dias, M. S. Crespi, C. A. Ribeiro, J. L. S. Fernandes and H. M. G. Cerqueira, “Application of Non-Isothermal Cure Kinetics on the Interaction of Poly (Ethylene Tereph- thalate)—Alkyd Resin Paints,” Journal of Thermal Analysis and Calorimetry, Vol. 91, No. 2, 2008, pp. 409-412. doi:10.1007/s10973-006-7862-1
[10] B. G. Girija, R. R. N. Sailaja and G. Madras, “Thermal Degradation and Mechanical Properties of PET Blends,” Polymer Degradation and Stability, Vol. 90, No. 1, 2005, pp. 147-153. doi:10.1016/j.polymdegradstab.2005.03.003
[11] A. Khawam and D. Flanagan, “Solid-State Kinetic Models: Basics and Mathematical Fundamentals,” The Journal of Physical Chemistry B, Vol. 110, No. 35, 2006, pp. 17315-17328. doi:10.1021/jp062746a
[12] J.-Y. Kim, D.-K. Kim and S.-H. Kim, “Thermal Decomposition Behavior of Poly (Ethylene 2,6 Naphthalate)/Silica Nanocomposites,” Polymer Composites, Vol. 30, No. 12, 2009, pp. 1779-1787. doi:10.1002/pc.20749
[13] S. Kim and J.-K. Park, “Characterization of Thermal Reaction by Peak Temperature and Height of DTG Curves,” Thermochimica Acta, Vol. 264, No. 1-2, 1995, pp. 137-156. doi:10.1016/0040-6031(95)02316-T
[14] P. Paik and K. K. Kar, “Kinetics of Thermal Degradation and Estimation of Lifetime for Polypropylene Particles: Effects of Particle Size,” Polymer Degradation and Stability, Vol. 93, No. 1, 2008, pp. 24-35. doi:10.1016/j.polymdegradstab.2007.11.001
[15] W. Tang, X. G. Li and D. Y. Yan, “Thermal Decomposition Kinetics of Thermotropic Copolyesters Made from trans-p-Hydroxycinnamic Acid and p-Hydroxybenzoic Acid,” Journal of Applied Polymer Science, Vol. 91, No. 1, 2004, pp. 445-454. doi:10.1002/app.13103
[16] S. Ch. Turmanova, S. D. Genieva, A. S. Dimitrova and L. T. Vlaev, “Non-Isothermal Degradation Kinetics of Filled with Rise Husk Ash Polypropene Composites,” Express Polymer Letters, Vol. 2, No. 2, 2008, pp. 133-146. doi:10.3144/expresspolymlett.2008.18
[17] S. Vyazovkin and C. Wight, “Isothermal and Nonisothermal Reaction Kinetics in Solids: In Search of Ways toward Consensus,” The Journal of Physical Chemistry A, Vol. 101, No. 44, 1997, pp. 8279-8284. doi:10.1021/jp971889h
[18] L. Katsikas and I. G. Popovi?, “Improvement to the Flynn-Wall Method of Determining Apparent Activation Energies of the Thermal Degradation of Polymers,” The Journal of Physical Chemistry B, Vol. 107, 2003, pp. 7522-7525. doi:10.1021/jp027865e
[19] J. A. F. F. Rocco, J. E. S. Lima, A. G. Frutuoso, K. Iha, M. Ionashiro, J. R. Matos and M. E. V. Suárez-Iha, “Thermal Degradation of a Composite Solid Propellant Examined by DSC,” Journal of Thermal Analysis and Calorimetry, Vol. 75, No. 2, 2004, pp. 551-557. doi:10.1023/B:JTAN.0000027145.14854.f0

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.