Advances in understanding of the primary reactions of protochlorophyll(ide) photoreduction in cells and model systems
Olga B. Belyaeva, Felix F. Litvin
.
DOI: 10.4236/jbpc.2011.21001   PDF    HTML     5,319 Downloads   10,158 Views   Citations

Abstract

The key step in chlorophyll biosynthesis is photoreduction of its immediate precursor, protochlorophyllide. This reaction is catalyzed by a photoenzyme, protochlorophyllide oxidoreductase (POR) and consists in the attachment of two hydrogen atoms in positions C17 and C18 of the tetrapyrrole molecule of protochlorophyllide; the double bond is replaced with the single bond. Two hydrogen donors involved in protochloro-phyllide photoreduction are NADPH [1,2] and a conserved tyrosine residue Tyr193 of the photoenzyme POR [3]. The structure of active pigment-enzyme complex (Pchlide-POR-NADPH) ensures a favorable steric conditions for the transfer of hydride ion and proton. This review does not examine the ternary complex structure, but concentrates upon the mechanisms of primary photophysical and photochemical reactions during formation of chlorophyllide from protochlorophyllide in living objects (etiolated leaves and leaf homogenates) and model systems.

Share and Cite:

Belyaeva, O. and Litvin, F. (2011) Advances in understanding of the primary reactions of protochlorophyll(ide) photoreduction in cells and model systems. Journal of Biophysical Chemistry, 2, 1-9. doi: 10.4236/jbpc.2011.21001.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Griffiths, W.T. (1974) Source of reducing equivalent for the in vitro synthesis of chlorophyll from protochlorophyll. FEBS Letters, 46, 301-304. doi:10.1016/0014-5793(74)80392-3
[2] Griffiths, W.T. (1975) Сharacterization of the terminal stages of chlorophyll(ide) synthesis in etioplast membrane preparations. Biochemistry Journal, 152, 623-635.
[3] Wilks, H.M. and Timko M.P. (1995) A light-dependent complexation system for analysis of NADPH: protochlorophyllide oxidoreductase identification and muta- genesis of two conserved residues that are essential for activity. Proceedings of the National Academy of the Sciences of the USA, 92, 724-728. doi:10.1073/pnas.92.3.724
[4] Rubin, A.B., Minchenkova, L.E., Krasnovsky, A.A. and Tumerman, L.A. (1962) Investigation of protochlorophyllide fluorescence lifetime during greening of etiolated leaves. Biofizika, 7, 571-577.
[5] Goedheer, J.C. and Verhulsdonk, C.A.H. (1970) Fluorescence and phototransformation of protochlorophyll with etiolated bean leaves from –196?C to +20?C. Biochemical and Biophysical Research Communications, 39, 260-266. doi:10.1016/0006-291X(70)90787-4
[6] Sironval, C. and Kuyper, P. (1972) The reduction of protochlorophyllide into chlorophyllide: IV. The nature of the intermediate P688-676 species. Photosynthetica, 6, 254-275.
[7] Raskin, V.I. (1976) Mechanism of photoredution of protochlorophyllide in the intact etiolated leaves. Vesti Akademii Nauk BSSR, 5, 43-46.
[8] Franck, F. and Mathis, P. (1980) A short-lived intermediate in the photoenzimatic reduction of protochlorophyll (ide) into chlorophyll(ide) at a physiological temperature. Photochemistry and Photobiology, 32, 799-803. doi:10.1111/j.1751-1097.1980.tb04058.x
[9] Inoue, Y., Kobayashi, T., Ogawa, T. and Shibata, K. (1981) A short lived intermediate in the photoconversion of protochlorophyllide to chlorophyllide a. Plant Cell Physiology, 22(2), 197-204.
[10] Dujardin, E. and Sironval, C. (1977) The primary reactions in the protochlorophyll(ide) photoreduction. Plant Science Letters, 10(1), 347-353. doi:10.1016/0304-4211(77)90060-8
[11] Dujardin, E. and Correia, M. (1979) Long-wavelength absorbing pigment protein complexes as fluorescence quenchers in etiolated leaves illuminated in liquid nitrogen. Photobiochemistry and Photobiophysics, 1, 25-32.
[12] Dujardin, E., Correia, M. and Sironval, C. (1981) Fluorescence quenching of protochlorophyllide, chlorophyllide and chlorophyll in etiolated, greening and green leaves. Proceedings 5th Internatioal Congress On Photosynthesis, Phyladelfia, 5, 21-29.
[13] Dujardin, E. (1984) The long-wavelength-absorbing quenchers formed during illumination of protochlorophyllide-proteins. In: Sironval, C. and Brouers, M. Eds., Protochlorophyllide Reduction and Greening, Martinus Nijhoff/Dr. W Junk Publisher, The Hague, 87-98.
[14] Losev, A.P. and Lyal′kova, N.D. (1979) Investigation of the primaries stages of protochlorophyllide photoreduction in the etiolated plants. Molecular Biology, 13, 837-844.
[15] Belyaeva, O.B. and Litvin, F.F. (1981) Primary reactions of protochlorophyllide into chlorophyllide phototransformation at 77 K. Photosynthetica, 15, 210-215.
[16] Litvin, F.F., Ignatov, N.V. and Belyaeva, O.B. (1981) Photoreversibility of transformation of protochlorophyllide into chlorophyllide. Photobiochemistry and Photobiophysics, 2, 233-237.
[17] Heyes, D.J., Ruban, A.V., Wilks, H.M. and Hunter, C.N. (2002) Enzimology below 200 K: The kinetics and thermodinamics of the photochemistry catalyzed by protochlorophyllide oxidoreductase. Proceedings of the National Academy of the Sciences of the USA, 99, 11145- 11150. doi:10.1073/pnas.182274199
[18] Heyes, D.J., Ruban, A.V. and Hunter, C.N. (2003) Protochlorophyllide oxidoreductase: “Dark” reaction of a light-driven enzyme. Biochemistry, 42(2), 523-528. doi:10.1021/bi0268448
[19] Heyes, D.J., Hunter, C.N., van Stokkum, I.H.M., Grondelle, R. and Groot, M.L. (2003) Ultrafast enzymatic reaction dynamics in protochlorophyllide oxidoreductase. Nature Structural Biology, 10, 491-492. doi:10.1038/nsb929
[20] Belyaeva, O.B., Personova, E.R. and Litvin, F.F. (1983) Photochemical reaction of chlorophyll biosynthesis at 4.2 K. Photosynthesis Research, 4(1), 81-85. doi:10.1007/BF00041803
[21] Belyaeva, O.B., Timofeev K.N. and Litvin, F.F. (1988) The primary reaction in the protochlorophyll(ide) photoreduction as investigated by optical and ESR-spectroscopy. Photosynthesis Research, 15(3), 247-256. doi:10.1007/BF00047356
[22] Belyaeva, O.B. (2009) Light dependent chlorophyll biosynthesis. BINOM, Moscow.
[23] Iwai, J., Ikeuchi, M., Inoue, Y. and Kobayashi, T. (1984) Early processes of protochlorophyllide photoreduction as measured by nanosecond and picosecond spectrophotometry. In: Sironval, C. and Brouers, M. Eds., Protochlorophyllide Reduction and Greening, Martinus Nijhoff/Dr.W Junk Publisher, The Hague, 99-112.
[24] Ignatov, N.V., Belyaeva, O.B. and Litvin, F.F. (1993) Low temperature phototransformation of protochlorophyll(ide) in etiolated leaves. Photosynthesis Research, 38(2), 117-124. doi:10.1007/BF00146410
[25] Frank, F., Dujardin E. and Sironval, C. (1980) Non-fluorescent, short-lived intermediate in photoenzymatic protochlorophyllide reduction at room temperature. Plant Sciences Letters, 18, 375-380. doi:10.1016/0304-4211(80)90101-7
[26] van Bochove, A.C., Griffiths, W.T. and van Grondelle, R. (1984) The primary reaction in the photoreduction of protochlorophyllide. A nanosecond fluorescence study. In: Sironval, C. and Brouers, M. Eds., Protochlorophyllide Reduction and Greening, Martinus Nijhoff/Dr.W Junk Publisher, The Hague, 113-125.
[27] Belyaeva, O.B. and Litvin, F.F. (1989) Photobiosynthesis of chlorophyll. Moscow State University Press, Moscow.
[28] Raskin, V.I. and Schwartz, A. (2002) The charge-transfer complex between protochlorophyllide and NADPH: An intermediate in protochlorophyllide photoreduction. Phosin- thesis Research, 74(2), 181-186.
[29] Dobek, A., Dujardin, E., Franck, F., Sironval, C., Breton, J. and Roux, E. (1981) The first events of protochlorophyll(ide) photoreduction investigated in etiolated leaves by means of the fluorescence excited by short, 610 nm laser flashes at room temperature. Photobiochemistry and Photobiophysics, 2, 35-44.
[30] Schoefs, B., Bertrand, M. and Franck, F. (2000) Spectroscopic properties of protochlorophyllide analyzed in situ in the course of etiolation and in illuminated leaves. Photochemistry and Photobiology, 72(1), 85-93. doi:10.1562/0031-8655(2000)072<0085:SPOPAI>2.0.CO;2
[31] Ignatov, N.V. and Litvin, F.F. (2002) A new pathway of chlorophyll biosynthesis from long-wavelength protochlorophyllide Pchlide 686/676 in juvenile etiolated plants. Photosynthesis Research, 71(1), 195-207. doi:10.1023/A:1015595426181
[32] Belyaeva, O.B. and Sundqvist, C. (1998) Comparative investigation of the appearance of primary chlorophyllide forms in etiolated leaves, prolamellar bodies and prothylakoids. Photosynthesis Research, 55(1), 41-48. doi:10.1023/A:1005974305351
[33] Belyaeva, O.B. and Litvin, F.F. (2009) Pathways of formation of pigment forms at the terminal photobiochemical stage of chlorophyll biosynthesis. Biochemistry, 74, 1535-1544.
[34] Belyaeva, O.B., Bystrova, M.I., Safronova, I.A., Litvin, F.F. and Krasnovsky, A.A. (1985) Photoinduced reversible changes in protochlorophyll fluorescence in model systems. Molecular Biology, 30, 933-938.
[35] Brouers, M. (1975) Optical properties of in vivo aggregates of protochlorophyllide in non-polar solvents. II. Fluorescence polarization, delayed fluorescence and circular dichroism spectra. Photosynthetica, 9, 304-310.
[36] B?ddi, B., Soos, J. and Lang, F. (1980) Protochlorophyll forms with different molecular arrangements. Biochimica et Biophysica Acta, 593(1), 158-165. doi:10.1016/0005-2728(80)90017-1
[37] Belyaeva, O.B., Griffiths, W.T., Kovalev, J.V., Timofeev, K.N. and Litvin, F.F. (2001) Participation of free radicals in photoreduction of protochlorophyllide to chlorophyllide in artificial pigment-protein complexes. Biochemistry, 66(2), 173-177.
[38] Heyes, D.J., Heathcote, P., Rigby, S.E.J., Palacios, M.A., Grondelle, R. and Hunter, C.N. (2006) The first catalytic step of the light-driven enzyme protochlorophyllide oxidoreductase proceeds via a charge transfer complex. The Journal of Biological Chemistry, 281(37), 26847-26853. doi:10.1074/jbc.M602943200
[39] Valera, V., Fung, M., Wessler, A. N. and Richards, W.R. (1987) Synthesis of 4R- and 4S-tritium labeled NADPH for the determination of the coenzyme sterespecificity of NADPH: Protochlorophyllide oxidoreductase. Biochemical and Biophysical Research Communications, 148(1), 515- 520. doi:10.1016/0006-291X(87)91141-7
[40] Begley, J.R. and Young, M. (1989) Protochlorophyllide reductase. I. Determination of the regiochemistry and the stereochemistry of the reduction of protochlorophyllide to chlorophyllide. Journal of the American Chemical Society, 111, 3095-3096. doi:10.1021/ja00190a071
[41] Lebedev, N., Karginova, O., McIvor, W. and Timko, M. (2001) Tyr275 and Lys279 stabilize NADPH within the catalytic site of NADPH: Protochlorophyllide oxidoreductase and are involved in the formation of the enzyme photoactive state. Biochemistry, 40(42), 12562-12574. doi:10.1021/bi0105025
[42] Menon, B.R.K., Waltho, J.P., Scrutton, N.S. and Heyes, D.J. (2009) Cryogenic and laser photoexitation studies identify multiple roles for active site residues in the light-driven enzyme protochlorophyllide oxidoreductase. Journal of Biologycal Chemistry, 284(27), 18160-18166. doi:10.1074/jbc.M109.020719
[43] Townley, H.E., Sessions, R.B., Clarke, A.R., Dafforn, T.R. and Griffiths, W.T. (2001) Protochlorophyllide oxidoreductase: A homology model examined by sitedirected mutagenesis. Proteins: Structure, Funktion, and Genetics, Vol. 44(3), 329-335. doi:10.1002/prot.1098
[44] Menon, B.R.K., Davison, P.A., Hunter, C.N., Scrutton N.S. and Heyes, D.J. (2010) Mutagenesis alters the catalytic mechanism of the light-driven enzyme protochlorophyllide oxidoreductase. Journal of Biologycal Chemistry, 285(3), 2113-2119. doi:10.1074/jbc.M109.071522
[45] Krasnovsky, A.A. Jr., Belyaeva, O.B., Kovalev, Yu.V., Ignatov, N.V. and Litvin, F.F. (1999) Phosphorescence of intermediates of the terminal photochemical stage of chlorophyll biosynthesis. Biochemistry, 64(5), 703-708.
[46] Griffiths, W.T., McHugh, T. and Blankenship, R.E. (1996) The light intensity dependence of protochlorophyllide photoreduction and its significance to the catalytic mechanism of protochlorophyllide reductase. FEBS Letters, 398, 235-238. doi:10.1016/S0014-5793(96)01249-5
[47] Heyes, D.J., Sakuma, M., Visser, S.P. and Scrutton, N.S. (2009) Nuclear quantum tunneling in the light-activated enzyme protochlorophyllide oxidoreductase. Journal of biologibal chemistry, 284(6), 3762-3767.
[48] Belyaeva, O.B. and Litvin, F.F. (2007) Photoactive pigment-enzyme complexes of chlorophyll precursor. Biochemistry, 72(13), 1458-1477.
[49] Walker, C.J. and Griffiths, W.T. (1988) Protochlorophyllide reductase: A flavoprotein? FEBS Letters, 239(2), 259-262. doi:10.1016/0014-5793(88)80929-3
[50] Nayar, P., Brun, A., Harriman, A., Begley, T.P. (1992) Mechanistic studies on protochlorophyllide reductase: A model system for the enzymatic reaction. Journal of the Chemical Society, Chemical Communications, 5, 395-397. doi:10.1039/c39920000395
[51] Ignatov, N.V., Belyaeva, O.B. and Litvin, F.F. (1993) The possible role of the flavin components of protochlorophylide-protein complexes in the primary processes of protochlorophyll photoreduction in etiolated plant leaves. Photosynthetica, 29, 235-241.
[52] Blenkenhorn, G. (1976) Nicotinamide-dependent one-electron and two-electron (Flavin) oxidoreductation: thermodynamics, kinetics, and mechanism. European Journal of Biochemistry, 67(1), 67-80. doi:10.1111/j.1432-1033.1976.tb10634.x

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.