The Mechanism of Formation of Glass-Ionomer Cement: A Theoretical Study

Abstract

A resin-modified glass-ionomer cement (RMGIC) was studied from a computational point of view. We suggest terpolymer formation by reaction of fixation through a combination of acrylic acid (AA), itaconic acid (IA) and an aminoacid derivative (AAD) in different positions. We found that AAD-AA-IA is thermodynamically more stable, but AA-IA-AAD is the combination which can react with glycidyl methacrylate (GM) to form a grafted polymer with two pendant methacrylate groups which can be used later in the process of light-curing. A RMGIC contains a glass powder of calcium-fluoroaluminosilicate acting as the source of cross linking, and for this reason, we have optimized two intramolecular Al3+ tricarboxylate complexes (salt-bridges) formed from the most stable grafted polymers. A possible reaction mechanism for the addition of (GM) to copolymer is proposed.

Share and Cite:

J. Gaviria, C. García, E. Vélez and J. Quijano, "The Mechanism of Formation of Glass-Ionomer Cement: A Theoretical Study," Modeling and Numerical Simulation of Material Science, Vol. 3 No. 4, 2013, pp. 149-154. doi: 10.4236/mnsms.2013.34021.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] B. M. Culbertson, “Glass-Ionomer Dental Restoratives,” Progress in Polymer Science, Vol. 26, No. 4, 2001, pp. 577-604. http://dx.doi.org/10.1016/S0079-6700(01)00006-5
[2] J. W. McLean, J. W. Nicholson and A. D. Wilson, “Proposed Nomenclature for Glass-Ionomer Dental Cements and Related Materials,” Quintessence International, Vol. 25, No. 9, 1994, pp. 587-589.
[3] J. M. Meyer, M. A. Cattani-Lorente and V. Dupuis, “Compomers: Between glass-ionomer cements and composites,” Biomaterials, Vol. 19, No. 6, 1998, pp. 529-539. http://dx.doi.org/10.1016/S0142-9612(97)00133-6
[4] B. M. Culbertson, “New Polymeric Materials for Use in Glass-Ionomer Cements,” Journal of Dentistry, Vol. 34, No. 6, 2006, pp. 556-565. http://dx.doi.org/10.1016/j.jdent.2005.08.008
[5] D. Xie, I.-D. Chung, W. Wu, J. Lemons, A. Puckett and J. Mays, “An Amino Acid-Modified and Non-HEMA Containing Glass-Ionomer Cement,” Biomaterials, Vol. 25, No. 10, 2004, pp. 1825-1830. http://dx.doi.org/10.1016/j.biomaterials.2003.08.033
[6] L. H. Prentice, M. J. Tyas and M. F. Burrow, “The Effect of Particle Size Distribution on an Experimental Glass- Ionomer Cement,” Dental Materials, Vol. 21, No. 6, 2005, pp. 505-510. http://dx.doi.org/10.1016/j.dental.2004.07.016
[7] D. Xie, I. L. D. Chung, W. Wu and J. Mays, “Synthesis and Evaluation of HEMA-Free Glass Ionomer Cements for Dental Applications,” Dental Materials, Vol. 20, No. 5, 2004, pp. 470-478. http://dx.doi.org/10.1016/j.dental.2003.07.003
[8] R. E. Gaussian, G. W. T. M. J. Frisch, H. B. Schlegel, G. E. Scuseria, J. R. C. M. A. Robb, J. A. Montgomery Jr., T. Vreven, J. C. B. K. N. Kudin, J. M. Millam, S. S. Iyengar, J. Tomasi, B. M. V. Barone, M. Cossi, G. Scalmani, N. Rega, H. N. G. A. Petersson, M. Hada, M. Ehara, K. Toyota, J. H. R. Fukuda, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, M. K. H. Nakai, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. A. V. Bakken, J. Jaramillo, R. Gomperts, R. E. Stratmann, A. J. A. O. Yazyev, R. Cammi, C. Pomelli, J. W. Ochterski, , K. M. P. Y. Ayala, G. A. Voth, P. Salvador, J. J. Dannenberg, S. D. V. G. Zakrzewski, A. D. Daniels, M. C. Strain, D. K. M. O. Farkas, A. D. Rabuck, K. Raghavachari, J. V. O. J. B. Foresman, Q. Cui, A. G. Baboul, S. Clifford, B. B. S. J. Cioslowski, G. Liu, A. Liashenko, P. Piskorz, R. L. M. I. Komaromi, D. J. Fox, T. Keith, M. A. Al-Laham, A. N. C. Y. Peng, M. Challacombe, P. M. W. Gill, W. C. B. Johnson, M. W. Wong, C. Gonzalez, J. A. Pople and I. Gaussian, “Gaussian 03, \uppercase{R}evision \uppercase{C}.02,” Wallingford CT, 2004.
[9] W. Kohn, A. D. Becke and R. G. Parr, “Density Functional Theory of Electronic Structure,” The Journal of Physical Chemistry, Vol. 100, No. 31, 1996, pp. 12974- 12980. http://dx.doi.org/10.1021/jp960669l
[10] P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, “ab-Initio Calculation of Vibrational Absorption and Circular-Dichroism Spectra Using Density-Functional Force-Fields,” Journal of Physical Chemistry, Vol. 98, No. 45, 1994, pp. 11623-11627. http://dx.doi.org/10.1021/j100096a001
[11] W. J. Hehre, L. Radom, P. V. R. Schleyer and J. A. Pople, “ab Initio Molecular Orbital Theory,” Wiley, New York, 1986.
[12] A. D. Becke, “Density-Functional Thermochemistry 3. The Role of Exact Exchange,” Journal of Chemical Physics, Vol. 98, 1993, pp. 5648-5652. http://dx.doi.org/10.1063/1.464913
[13] C. T. Lee, W. T. Yang and R. G. Parr, “Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron-Density,” Physical Review B, Vol. 37, No. 2, 1988, pp. 785-789. http://dx.doi.org/10.1103/PhysRevB.37.785
[14] D. A. McQuarrie and J. D. Simon, “Molecular Thermodynamics,” University Science Books, Sausalito, 1999.
[15] A. D. Wilson and J. W. McLean, “Glass Ionomer Cement,” Quintessence Publishing, Chicago, 1988.
[16] Z. Ouyang, S. K. Sneckenberger, E. C. Kao, B. M. Culbertson and P. W. Jagodzinski, “New Method for Monitoring the Reaction of Glass-Ionomer Cements: A Spectroscopic Study of the Effects of Polyacid Structure on the Decomposition of Calcium Aluminosilicate Glasses,” Applied Spectroscopy, Vol. 53, No. 3, 1999, pp. 297-301.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.