Determination of Thermal Conductivity and Porosity of Building Stone from Ultrasonic Velocity Measurements

Abstract

Ultrasonic velocity measurement, a non-destructive and easy method to apply in both field and laboratory conditions, has increasingly been conducted to determine the physical properties of rock materials. This paper presents an experimental study of the measurement of P-wave velocity, thermal conductivity and porosity of several types of sedimentary, metamorphic, and magmatic rocks. The aim of this study is to predict the rocks properties including their thermal conductivity and porosity using P-wave velocity. For this purpose, the physical properties are determined in the laboratory to obtain correlations between P-wave velocity and physical properties. Consequently, good linear relationships are found between all the determined physical properties and the P-wave velocity measurements.

Share and Cite:

A. Boulanouar, A. Rahmouni, M. Boukalouch, A. Samaouali, Y. Géraud, M. Harnafi and J. Sebbani, "Determination of Thermal Conductivity and Porosity of Building Stone from Ultrasonic Velocity Measurements," Geomaterials, Vol. 3 No. 4, 2013, pp. 138-144. doi: 10.4236/gm.2013.34018.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] G. Vasconcelos, P. B. Lourenco, C. S. A. Alves and J. Pamplona, “Prediction of the Mechanical Properties of Granites by Ultrasonic Pulse Velocity and Schmidt Hammer Hardness,” Masonry Conference, Missouri, 3-5 June 2007, pp. 998-1009.
[2] E. Yasar and Y. Erdogan, “Correlating Sound Velocity with the Density, Compressive Strength and Young’s Modulus of Carbonate Rocks,” International Journal of Rock Mechanics and Mining Sciences, Vol. 41, No. 5, 2004, pp. 871-875. http://dx.doi.org/10.1016/j.ijrmms.2004.01.012
[3] S. Kahraman, “A correlation between P-wave Velocity, Number of Joints and Schmidt Hammer Rebound Number,” International Journal of Rock Mechanics and Min- ing Sciences, Vol. 38, No. 5, 2001, pp. 729-733. http://dx.doi.org/10.1016/S1365-1609(01)00034-X
[4] P. Gaviglio, “Longitudinal Waves Propagation in a Limestone: the Relationship between Velocity and Density,” Rock Mechanics and Rock Engineering, Vol. 22, No. 4, 1989, pp. 299-306. http://dx.doi.org/10.1007/BF01262285
[5] F. K. Boadu, “Predicting the Transport Properties of Fractured Rocks from Seismic Information: Numerical Experiments,” Journal of Applied Geophysics, Vol. 44, No. 2-3, 2000, pp. 103-113. http://dx.doi.org/10.1016/S0926-9851(99)00020-8
[6] S. Kahraman and T. Yeken, “Determination of Physical Properties of Carbonate Rocks from P-wave Velocity,” Bulletin of Engineering Geology and the Environment, Vol. 67, No. 2, 2008, pp. 277-281. http://dx.doi.org/10.1007/s10064-008-0139-0
[7] A Boulanouar, A. Rahmouni, M, Boukalouch, Y Géraud, I. El Amrani El Hassani, M. Harnafi and M. J. Sebbani, “Corrélation entre la Vitesse d’Onde P et la Conductivité Thermique des Matériaux Hétérogènes et Poreux,” MATEC Web of Conferences, Vol. 2, No. 05004, 2012, pp. 1-7. http://dx.doi.org/10.1051/matecconf/20120205004
[8] C. Clauser and E. Huenges, “Thermal Conductivity of Rocks and Minerals,” In: T. J. Ahrens, Ed., Rock Physics & Phase Relations: A Handbook of Physical Constants, AGU Ref. Shelf, Vol. 3, 1995, pp. 105-126. http://dx.doi.org/10.1029/RF003p0105
[9] Y. Popov, D. Pribnow, J. H. Sass, C. F. Williams and H. Burkhardt, “Characterization of Rock Thermal Conductivity by High Resolution Optical Scanning,” Geothemics, Vol. 28, No. 2, 1999, pp. 253-276. http://dx.doi.org/10.1016/S0375-6505(99)00007-3
[10] F. Surma and Y. Géraud, “Porosity and Thermal Conduc- tivity of the Soultz-Sous-Forêts Granite,” Pure and Applied Geophysics, Vol. 160, No. 5-6, 2003, pp. 1125-1136. http://dx.doi.org/10.1007/PL00012564
[11] ISRM, “Suggested Method for Determining Sound Velocity,” International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, Vol. 15, No. 2, 1978, pp. 53-58. http://dx.doi.org/10.1016/0148-9062(78)91678-9
[12] Y. Géraud, “Déformation Thermomécanique et Porosité des Roches Granitiques: Evolution des Espaces Poreux,” Ph.D. Thesis, Université de Marseille, Marseille, 1991.
[13] F. Surma, “Détermination de la Porosité de la Zone Endommagée autour d’une Faille. Role des Caractéristiques du Matériau (Minéralogie, Structure de Porosité, Caractéristiques Physiques) sur les Propriétés d’Echange Fluides-Roche,” Ph.D. Thesis, Université Luis Pasteur, Strasbourg, 2003.
[14] M. Rosener, “Etude Pétrophysique et Modélisation des Effets des Transferts Thermiques entre Roche et Fluide dans le Contexte Géothermique de Soultz-Sous-Forets,” Ph.D. Thesis, Université Luis Pasteur, Strasbourg, 2007.
[15] P. Bousquie, “Texture et Porosité des Roches Calcaires,” Ph.D. Thesis, Université Paris VI et Ecole des Mines de Paris, Paris, 1979.
[16] S. Yagiz, “P-wave Velocity Test for Assessment of Geotechnical Properties of some Rock Materials,” Bulletin of Materials Science, Vol. 34, No. 4, 2011, pp. 947-953. http://dx.doi.org/10.1007/s12034-011-0220-3
[17] Y. Guéguen and V. Palciauskas, “Introduction à la Physique des Roches,” Editeurs des Sciences et des Arts, Heremann, 1992, pp. 168-169.
[18] A. Rahmouni, A. Boulanouar, A. Samaouali, M. Boukalouch, Y. Géraud, M. Harnafi and M. J. E. Sebbani, “Estimation of Porosity in Calcarenite Rocks Using Ultrasonic Velocity Measurements,” Sixième Colloque Maghrébin de Géophysique Appliquée, Meknès, Morocco, 3-5 Mai 2013.
[19] J. Beck, “Etude des Propriétés Hydriques et des Mécanismes d’Altération de Pierres Calcaires à Forte Porosité,” Ph.D. Thesis, Université d’Orléans, Orléans, 2006.
[20] H.T. Ozkahraman, R. Selver and E. C. Isik, “Determination of the Thermal Conductivity of Rock from P-Wave Velocity,” International Journal of Rock Mechanics and Mining Sciences, Vol. 41, No. 4, 2004, pp. 703-708. http://dx.doi.org/10.1016/j.ijrmms.2004.01.002
[21] A. Rahmouni, A. Boulanouar, A. Samaouali, M. Boukalouch, Y. Géraud, M. Harnafi and M. J. E. Sebbani, “Determination the Thermal Conductivity of Porous Media from P-Wave Velocity,” 11ème Congrès de Mécanique, Agadir, Morocco, 23-26 April 2013.
[22] T.N. Singh, S. Sinha and V. K. Singh, “Prediction of Thermal Conductivity of Rock Through Physico-Mechanical Properties,” Building and Environment, Vol. 42, No. 1, 2007, pp. 146-155. http://dx.doi.org/10.1016/j.buildenv.2005.08.022

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.