Carbon Nanotube Addition to Simultaneously Enhance Strength and Ductility of Hybrid AZ31/AA5083 Alloy
Muralidharan Paramsothy, Manoj Gupta, Jimmy Chan, Richard Kwok
.
DOI: 10.4236/msa.2011.21004   PDF    HTML     5,726 Downloads   11,056 Views   Citations

Abstract

AZ31/AA5083 hybrid alloy nanocomposite containing CNT nanoparticle reinforcement was fabricated using solidification processing followed by hot extrusion. The AZ31/AA5083 hybrid alloy nanocomposite exhibited similar grain size to monolithic AZ31/AA5083 hybrid alloy, reasonable CNT nanoparticle distribution, non-dominant (0 0 0 2) texture in the longitudinal direction, and 20% higher hardness than monolithic AZ31/AA5083 hybrid alloy. Compared to monolithic AZ31/AA5083 hybrid alloy (in tension), the AZ31/AA5083 hybrid alloy nanocomposite exhibited higher 0.2% TYS, UTS, failure strain and work of fracture (WOF) (+ 9%, + 4%, + 38% and + 44%, respectively). Also, compared to monolithic AZ31/AA5083 hybrid alloy (in compression), the AZ31/AA5083 hybrid alloy nanocomposite exhibited similar 0.2% CYS (+ 1%), and higher UCS, failure strain and WOF (+ 7%, + 23% and + 23%, respectively). The effect of CNT nanoparticle addition on the enhanced tensile and compressive response of AZ31/AA5083 hybrid alloy is investigated in this paper.

Share and Cite:

M. Paramsothy, M. Gupta, J. Chan and R. Kwok, "Carbon Nanotube Addition to Simultaneously Enhance Strength and Ductility of Hybrid AZ31/AA5083 Alloy," Materials Sciences and Applications, Vol. 2 No. 1, 2011, pp. 20-29. doi: 10.4236/msa.2011.21004.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Y. Morisada, H. Fujii, T. Nagaoka and M. Fukusumi, “Effect of Friction Stir Processing with SiC Particles on Microstructure and Hardness of AZ31,” Materials Science and Engineering A, Vol. 433, 2006, pp. 50-54. doi:10.1016/j.msea.2006.06.089
[2] Y. Morisada, H. Fujii, T. Nagaoka and M. Fukusumi, “Nanocrystallized Magnesium Alloy-Uniform Dispersion of C60 Molecules,” Scripta Materialia, Vol. 55, 2006, pp. 1067-1070. doi:10.1016/j.scriptamat.2006.07.055
[3] Y. Morisada, H. Fujii, T. Nagaoka and M. Fukusumi, “MWCNTs/AZ31 Surface Composites Fabricated by Friction Stir Processing,” Materials Science and Engineering A, Vol. 419, 2006, pp. 344-348. doi:10.1016/j.msea.2006.01.016
[4] W. B. Ding, H. Y. Jiang, X. Q. Zeng, D. H. Li and S.S. Yao, “The Surface Modified Composite Layer Formation with Boron Carbide Particles on Magnesium Alloy Surfaces Through Pulse Gas Tungsten Arc Treatment,” Applied Surface Science, Vol. 253, No. 8, 2007, pp. 3877-3883. doi:10.1016/j.apsusc.2006.08.015
[5] W. B. Ding, H. Y. Jiang, X. Q. Zeng, D. H. Li and S. S. Yao, “The Properties of Gas Tungsten Arc Deposited SiCP and Al Surface Coating on Magnesium Alloy AZ31,” Materials Letters, Vol. 61, No. 2, 2007, pp. 496-501. doi:10.1016/j.matlet.2006.04.113
[6] W. B. Ding, H. Y. Jiang, X. Q. Zeng, D. H. Li and S. S. Yao, “Microstructure and Mechanical Properties of GTA Surface Modified Composite Layer on Magnesium Alloy AZ31 with SiCP,” Journal of Alloys and Compounds, Vol. 429, No. 1-2, 2007, pp. 233-241. doi:10.1016/j.jallcom.2006.03.083
[7] K. Mizuuchi, K. Inoue, K. Hamada, M. Sugioka, M. Itami, M. Fukusumi and M. Kawahara, “Processing of TiNi SMA Fiber Reinforced AZ31 Mg Alloy Matrix Composite by Pulsed Current Hot Pressing,” Materials Science and Engineering A, Vol. 367, No. 1-2, 2004, pp. 343-349. doi:10.1016/j.msea.2003.10.286
[8] R. F. Service, “Superstrong Nanotubes Show They are Smart too,” Science, Vol. 281, 1998, pp. 940-942. doi:10.1126/science.281.5379.940
[9] P. G. Collins and P. Avouris, “Nanotubes for Electronics,” Scientific American, Vol. 283, No. 6, 2000, pp. 38-45. doi:10.1038/scientificamerican1200-62
[10] Y. Min-Feng, B. S. Files, S. Arepalli and R. S. Rouff, “Tensile Loading of Ropes of Single Wall Carbon Nanotubes and Their Mechanical Properties,” Physical Review Letters, Vol. 84, No. 24, 2000, pp. 5552-5555. doi:10.1103/PhysRevLett.84.5552
[11] W. H. Knechtel, G. S. Dusberg, W. J. Blau, E. Hernandez and A. Rubio, “Reversible Bending of Carbon Nanotubes Using a Transmission Electron Microscope,” Applied Physical Letters, Vol. 73, No. 14, 1998, pp. 1961-1963. doi:10.1063/1.122335
[12] P. G. Collins, M. S. Arnold and P. Avouris, “Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown,” Science, Vol. 292, 2001, pp. 706-709. doi:10.1126/science.1058782
[13] H. Stahl, J. Appenzeller, R. Martel, P. Avouris and B. Lengeler, “Intertube Coupling in Ropes of Single-Wall Carbon Nanotubes,” Physical Review Letters, Vol. 85, No. 26, 2000, pp. 5186-5189. doi:10.1103/PhysRevLett.84.4613
[14] S. Berber, Y. K. Kwon and D. Tomanek, “Unusually High Thermal Conductivity of Carbon Nanotubes,” Physical Review Letters, Vol. 84, No. 20, 2000, pp. 4613-4616. doi:10.1103/PhysRevLett.84.4613
[15] K. K. H. Wong, M. Zinke-Allmang, J. L. Hutter, S. Hrapovic, J.H.T. Luong and W. Wan, “The Effect of Carbon Nanotube Aspect Ratio and Loading on the Elastic modulus of Electrospun Poly (Vinyl Alcohol)-Carbon Nanotube Hybrid Fibers,” Carbon, Vol. 47, 2009, pp. 2571-2578. doi:10.1016/j.carbon.2009.05.006
[16] P. Chen, X. Wu, J. Lin and K. L. Tan, “Synthesis of Cu Nanoparticles and Microsized Fibers by Using Carbon Nanotubes as a Template,” Journal of Physical Chemistry B, Vol. 103, 1999, pp. 4559-4561. doi:10.1021/jp983983j
[17] X. Chen, J. Xia, J. Peng, W. Li and S. Xie, “Carbon-Nanotube Metal-Matrix Composites Prepared by Electroless Plating,” Composites Science and Technology, Vol. 60, 2000, pp. 301-306. doi:10.1016/S0266-3538(99)00127-X
[18] J. N. Coleman, S. Curran, A. B. Dalton, A. P. Harvey, B. McCarthy, W. Blau and R. C. Barklie, “Percolation-Dominated Conductivity in a Conjugated-Polymer-Carbon-Nanotube Composite,” Physical Review B, Vol. 58, 1998, pp. R7492-R7495. doi:10.1103/PhysRevB.58.R7492
[19] V. Lordi and N. Yao, “Molecular Mechanics of Binding in Carbon-Nanotube-Polymer Composites,” Journal of Materials Research, Vol. 15, No. 12, 2000, pp. 2770-2779. doi:10.1557/JMR.2000.0396
[20] L. M. Tham, M. Gupta and L. Cheng, “Influence of Processing Parameters during Disintegrated Melt Deposition Processing on Near Net Shape Synthesis of Aluminium Based Metal Matrix Composites,” Materials Science and Technology, Vol. 15, 1999, pp. 1139-1146.
[21] M. Gupta, M. O. Lai and S. C. Lim, “Regarding the Processing Associated Microstructure and Mechanical Properties Improvement of an Al-4.5Cu Alloy,” Journal of Alloys and Compounds, Vol. 260, 1997, pp. 250-255. doi:10.1016/S0925-8388(97)00156-4
[22] M. H. Al-Saleh and U. Sundararaj, “A Review of Vapor Grown Carbon Nanofiber/Polymer Conductive Composites,” Carbon, Vol. 47, No. 1, 2008, pp. 2-22. doi:10.1016/j.carbon.2008.09.039
[23] M. M. Avedesian and H. Baker, “ASM Specialty Handbook: Magnesium and Magnesium Alloys,” ASM International?, Novelty, 1999.
[24] Q. B. Nguyen and M. Gupta, “Increasing Significantly the Failure Strain and Work of Fracture of Solidification Processed AZ31B Using Nano-Al2O3 Particulates,” Journal of Alloys and Compounds, Vol. 459, 2007, pp. 244-250. doi:10.1016/j.jallcom.2007.05.038
[25] B. Q. Han and D. C. Dunand, “Microstructure and Mechanical Properties of Magnesium Containing High Volume Fractions of Yttria Dispersoids,” Materials Science and Engineering A, Vol. 277, 2000, pp. 297-304. doi:10.1016/S0921-5093(99)00074-X
[26] N. Eustathopoulos, M. G. Nicholas and M. Drevet, “Wettability at High Temperatures,” Pergamon, London, 1997.
[27] J. D. Gilchrist, “Extraction Metallurgy,” Pergamon, London, 1989.
[28] M. Paramsothy, S. F. Hassan, N. Srikanth and M. Gupta, “Adding Carbon Nanotubes and Integrating with AA5052 Aluminium Alloy Core to Simultaneously Enhance Stiffness, Strength and Failure Strain of AZ31 Magnesium Alloy,” Composites Part A, Vol. 40, 2009, pp. 1490-1500. doi:10.1016/j.compositesa.2009.06.007
[29] M. Gupta, M. O. Lai and C. Y. Soo, “Effect of Type of Processing on the Microstructural Features and Mechanical Properties of A1-Cu/SiC Metal Matrix Composites,” Materials Science and Engineering A, Vol. 210, 1996, pp. 114-122. doi:10.1016/0921-5093(95)10077-6
[30] S. F. Hassan and M. Gupta, “Effect of Different Types of Nano-Size Oxide Particulates on Microstructural and Mechanical Properties of Elemental Mg,” Journal of Materials Science, Vol. 41, 2006, pp. 2229-2236. doi:10.1007/s10853-006-7178-3
[31] S. F. Hassan and M. Gupta, “Effect of Particulate Size of Al2O3 Reinforcement on Microstructure and Mechanical Behavior of Solidification Processed Elemental Mg,” Journal of Alloys and Compounds, Vol. 419, 2006, pp. 84-90. doi:10.1016/j.jallcom.2005.10.005
[32] S. F. Hassan and M. Gupta, “Enhancing Physical and Mechanical Properties of Mg Using Nanosized Al2O3 Particulates as Reinforcement,” Metallurgical and Materials Transactions A, Vol. 36, No. 8, 2005, pp. 2253-2258. doi:10.1007/s11661-005-0344-4
[33] C. S. Goh, J. Wei, L. C. Lee and M. Gupta, “Development of Novel Carbon Nanotube Reinforced Magnesium Nanocomposites Using the Powder Metallurgy Technique,” Nanotechnology, Vol. 17, 2006, pp. 7-12. doi:10.1088/0957-4484/17/1/002
[34] Z. Szaraz, Z. Trojanova, M. Cabbibo and E. Evangelista, “Strengthening in a WE54 Magnesium Alloy Containing SiC Particles,” Materials Science and Engineering A, Vol. 462, 2007, pp. 225-229. doi:10.1016/j.msea.2006.01.182
[35] L. H. Dai, Z. Ling and Y. L. Bai, “Size-Dependent Inelastic Behavior of Particle-Reinforced Metal-Matrix Composites,” Composites Science and Technology, Vol. 61, 2001, pp. 1057-1063. doi:10.1016/S0266-3538(00)00235-9
[36] D. Hull and D. J. Bacon, “Introduction to Dislocations”, Butterworth-Heinemann, Oxford, 2002.
[37] E. T. Thostenson and T.-W. Chou, “Nanotube Buckling in Aligned Multi-Wall Carbon Nanotube Composites,” Carbon, Vol. 42, 2004, pp. 3003-3042. doi:10.1016/j.carbon.2004.06.012
[38] S. Namilae and N. Chandra, “Role of Atomic Scale Interfaces in the Compressive Behavior of Carbon Nanotubes in Composites,” Composites Science and Technology, Vol. 66, 2006, pp. 2030-2038. doi:10.1016/j.compscitech.2006.01.009
[39] M. Paramsothy, J. Chan, R. Kwok and M. Gupta, “Addition of CNTs to Enhance Tensile/Compressive Response of Magnesium Alloy ZK60A,” Composites Part A, Vol. 42, No. 2, 2010, pp. 180-188. doi:10.1016/j.compositesa.2010.11.001
[40] J.-M. Lu, C.-C. Hwang, Q.-Y. Kuo and Y.-C. Wang, “Mechanical Buckling of Multi-Walled Carbon Nanotubes: The Effects of Slenderness Ratio,” Physica E, Vol. 40, 2008, pp. 1305-1308. doi:10.1016/j.physe.2007.08.120
[41] T. Laser, C. Hartig, M. R. Nurnberg, D. Letzig and R. Bormann, “The Influence of Calcium and Cerium Mischmetal on the Microstructural Evolution of Mg-3Al-1Zn during Extrusion and Resulting Mechanical Properties,” Acta Materialia, Vol. 56, 2008, pp. 2791-2798. doi:10.1016/j.actamat.2008.02.010
[42] J. Bohlen, S. B. Yi, J. Swiostek, D. Letzig, H. G. Brokmeier and K. U. Kainer, “Microstructure and Texture Development during Hydrostatic Extrusion of Magnesium Alloy AZ31,” Scripta Materialia, Vol. 53, 2005, pp. 259-264. doi:10.1016/j.scriptamat.2005.03.036
[43] S. F. Hassan and M. Gupta, “Development of Nano-Y2O3 Containing Magnesium Nanocomposites Using Solidification Processing,” Journal of Alloys and Compounds, Vol. 429, 2007, pp. 176-183. doi:10.1016/j.jallcom.2006.04.033
[44] R. C. Batra and Z. G. Wei, “Instability Strain and Shear Band Spacing in Simple Tensile/Compressive Deformations of Thermoviscoplastic Materials,” International Journal of Impact Engineering, Vol. 34, 2007, pp. 448-463. doi:10.1016/j.ijimpeng.2005.11.004
[45] T. S. Wang, R. J. Hou, B. Lv, M. Zhang and F. C. Zhang, “Microstructure Evolution and Deformation Mechanism Change in 0.98C-8.3Mn-0.04N Steel during Compressive Deformation,” Materials Science and Engineering A, Vol. 465, 2007, pp. 68-71. doi:10.1016/j.msea.2007.02.065
[46] R. E. Reed-Hill, “Physical Metallurgy Principles”, D Van Nostrand Company, Princeton, 1964.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.