Diffusion Limitation for Atrazine Biodegradation in Soil

Abstract

Effects of sub-millimeter scale heterogeneity in chemical and microbial distributions on atrazine degradation were examined using Pseudomonas sp. strain ADP introduced into soil at a population mimicking atrazine-adapted soils (~2000 cells/g), and employing a range of soil water pressures (?100, ?300, ?500 kPa). Heterogeneous cell distribution was employed in all treatments whereas uniformity of distribution was a variable for atrazine introduction. Two methods of initially distributing atrazine in soil were examined. Proximally-applied atrazine (PAA) was intended to yield elevated atrazine concentrations in the vicinity of the degraders. Dispersed atrazine (DA) was introduced to distribute the chemical uniformly as compared to the distribution of degraders. Both rate and extent of degradation were greater than PAA, regardless of water content, presumably due to proximity of atrazine to degraders. Biodegradation decreased with decreasing water content for both application methods, attributed to decreases in atrazines effective diffusion. Mineralization of nearly 100% of DA in soils receiving a heterogeneous inoculum with a greater cell density (~107 cells/g) indicates that biodegradation was limited by the distance atrazine had to diffuse. Results support the hypothesis that enhanced populations of atrazine degraders, as reported elsewhere for atrazine-adapted soils, though heterogeneously distributed, may overcome bioavailability limitations.

Share and Cite:

T. Johnson, T. Ellsworth, R. Hudson and G. Sims, "Diffusion Limitation for Atrazine Biodegradation in Soil," Advances in Microbiology, Vol. 3 No. 5, 2013, pp. 412-420. doi: 10.4236/aim.2013.35056.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] H. M. LeBaron, J. E. MsFarland and O. Burnside, “The Triazine Herbicides: A Milestone in the Development of Weed Control Technology,” In: H. M. LeBaron, J. E. McFarland and O. Burnside, Eds., The Triazine Herbicides: 50 Years Revolutionizing Agriculture, Elsevier BV, Oxford, 2008, pp. 1-12.
[2] F. Ackerman, “The Economics of Atrazine,” International Journal of Occupational and Environmental Health, Vol. 13, No. 4, 2007, pp. 437-444.
[3] R. D. Wauchope, T. M. Butler, A. G. Hornsby, P. M. Augustine-Bekcers and J. P. Burt, “The SCS/ARS/CES Pesticide Properties Database for Environmental Decision Making,” Reviews of Environmental Contamination and Toxicology, Vol. 123, 1992, pp. 1-155. doi:10.1007/978-1-4612-2862-2_1
[4] D. L. Shaner and W. B. Henry, “Field History and Dissipation of Atrazine and Metolachlor in Colorado,” Journal of Environmental Quality, Vol. 36, No. 1, 2007, pp. 128-134. doi:10.2134/jeq2006.0160
[5] J. L. Krutz, D. L. Shanerb, C. Accinelli, R. M. Zablotowicz, and W. B. Henry, “Atrazine Dissipation in s-Triazine-Adapted and Nonadapted Soil from Colorado and Mississippi: Implications of Enhanced Degradation on Atrazine Fate and Transport Parameters,” Journal of Environmental Quality, Vol. 37, No. 3, 2008, pp. 848-857. doi:10.2134/jeq2007.0448
[6] E. A. Shaffer, G. K. Sims, A. M. Cupples, C. Smyth, J. Chee-Sanford and A. Skinner, “Atrazine Biodegradation in a Cisne Soil Exposed to a Major Spill,” International Journal of Soil, Sediment and Water, Vol. 3, No. 2, 2010, pp. 1-26.
[7] J. Mahía, S. J. González-Prieto, A. Martín, E. Baath and M. Díaz-Ravina, “Biochemical Properties and Microbial Community Structure of Five Different Soils after Atrazine Addition,” Biology and Fertility of Soils, Vol. 47, No. 5, 2011, pp. 577-589. doi:10.1007/s00374-011-0569-x
[8] C. Monard, F. Martin-Laurent, M. Devers-Lamran, O. Lima, P. Vandenkoornhuyse and F. Binet, “atz Gene Expressions during Atrazine Degradation in the Soil Drilosphere,” Molecular Ecology, Vol. 19, No. 4, 2010, pp. 749-759. doi:10.1111/j.1365-294X.2009.04503.x
[9] C. Monard, P. Vandenkoornhuyse, B. L. Bot and F. Binet, “Relationship between Bacterial Diversity and Function under Biotic Control: The Soil Pesticide Degraders as a Case Study,” The ISME Journal, Vol. 5, 2011, pp. 1048-1056. doi:10.1038/ismej.2010.194
[10] A. M. Cupples, E. A. Shaffer, J. C. Chee-Sanford and G. K. Sims, “DNA Buoyant Density Shifts during 15N DNA Stable Isotope Probing,” Microbiological Research, Vol. 162, No. 4, 2007, pp. 328-334. doi:10.1016/j.micres.2006.01.016
[11] Y. J. Tang, L. Qi and B. Krieger-Brockett, “Evaluating Factors That Influence Microbial Phenanthrene Biodegradation Rates by Regression with Categorical Variables,” Chemosphere, Vol. 59, No. 5, 2005, pp. 729-741. doi:10.1016/j.chemosphere.2004.10.037
[12] E. J. O’Loughlin, S. J. Traina and G. K. Sims, “Effects of Sorption on the Biodegradation of 2-Methylpyridine in Aqueous Suspensions of Reference Clay Minerals,” Environmental Toxicology and Chemistry, Vol. 19, No. 9, 2000, pp. 2168-2174. doi:10.1002/etc.5620190904
[13] G. K. Sims, S. Taylor-Lovell, G. Tarr and S. Maskel, “Role of Sorption and Degradation in the Herbicidal Function of Isoxaflutole,” Pest Management Science, Vol. 65, No. 7, 2009, pp. 805-810. doi:10.1002/ps.1758
[14] P. M. Gschwend and S. C. Wu, “On the Constancy of Sediment-Water Partition Coefficients of Hydrophobic Organic Pollutants,” Environmental Science and Technology, Vol. 19, No. 1, 1985, pp. 90-96. doi:10.1021/es00131a011
[15] M. Alexander and K. M. Scow, “Kinetics of Biodegradation in Soil,” In: B. L. Sawhney and K. Brown, Eds., Reactions and Movement of Organic Chemicals in Soils, ASA and SSSA, Madison, 1989, pp. 243-269.
[16] K. M. Scow and M. Alexander, “Effect of Diffusion on the Kinetics of Biodegradation: Experimental Results with Synthetic Aggregates,” Soil Science Society of America Journal, Vol. 56, No. 1, 1992, pp. 128-134. doi:10.2136/sssaj1992.03615995005600010020x
[17] K. M. Scow and J. Hutton, “Effect of Diffusion and Sorption on the Kinetics of Biodegradation: Theoretical Considerations,” Soil Science Society of America Journal, Vol. 56, No. 1, 1992, pp. 119-127. doi:10.2136/sssaj1992.03615995005600010019x
[18] E. Hiller, Z. Krascsenits and S. Cernansky, “Sorption of Acetochlor, Atrazine, 2,4-D, Chlorotoluron, MCPA, and Trifluralin in Six Soils from Slovakia,” Bulletin of Environmental Contamination and Toxicology, Vol. 80, No. 5, 2008, pp. 412-416. doi:10.1007/s00128-008-9430-9
[19] D. A. Laird and W. C. Koskinen, “Triazine Soil Interations,” In: H. M. LeBaron, J. E. McFarland and O. Burnside, Eds., The Triazine Herbicides: 50 Years Revolutionizing Agriculture, Elsevier, Oxford, 2008, pp. 275-300.
[20] A. R. Isensee, R. G. Nash and C. S. Helling, “Effect of Conventional vs. No-Tillage on Pesticide Leaching to Shallow Groundwater,” Journal of Environmental Quality, Vol. 19, No. 3, 1990, pp. 434-440. doi:10.2134/jeq1990.00472425001900030014x
[21] D. D. Buhler, G. W. Randall, W. C. Koskinen and D. L. Wyse, “Atrazine and Alachlor Losses from Subsurface Tile Drainage of a Clay Loam Soil,” Journal of Environmental Quality, Vol. 22, No. 3, 1993, pp. 583-588. doi:10.2134/jeq1993.00472425002200030024x
[22] K. Jayachandran, N. B. Stolpe, T. B. Moorman and P. J. Shea, “Application of 14C-Most-Probable-Number Technique to Enumerate Atrazine-Degrading Microorganisms in Soil,” Soil Biology and Biochemistry, Vol. 30, No. 4, 1998, pp. 523-529. doi:10.1016/S0038-0717(97)00137-5
[23] L. V. Gonod, C. Chenu and G. Soulas, “Spatial Variability of 2,4-Dichlorophenoxyacetic Acid (2,4-D) Mineralisation Potential at a Millimetre Scale in Soil,” Soil Biology & Biochemistry, Vol. 35, No. 3, 2003, pp. 373-382. doi:10.1016/S0038-0717(02)00287-0
[24] L. Wu, “Pore Size, Particle Size, Aggregate Size, and Water Retention,” Soil Science Society of America Journal, Vol. 54, No. 4, 1990, pp. 952-956. doi:10.2136/sssaj1990.03615995005400040002x
[25] M. Tuller, D. Or and L. M. Dudley, “Adsorption and Capillary Condensation in Porous Media: Liquid Retention and Interfacial Configurations in Angular Pores,” Water Resources Research, Vol. 35, No. 7, 1999, pp. 1949-1964. doi:10.1029/1999WR900098
[26] P. Duquenne, C. Chenu, G. Richard and G. Catroux, “Effect of Carbon Source Supply and Its Location on Competition between Inoculated and Established Bacterial Strains in Sterile Soil Microcosm,” FEMS Microbiology Ecology, Vol. 29, No. 4, 1999, pp. 331-339. doi:10.1111/j.1574-6941.1999.tb00624.x
[27] G. Soulas and B. Lagacherie, “Modeling of Microbial Degradation of Pesticides in Soils,” Biology and Fertility of Soils, Vol. 33, No. 6, 2001, pp. 551-557. doi:10.1007/s003740100363
[28] J. Zhou, B. Xia, H. Huang, A. V. Palumbo and J. M. Tiedje, “Microbial Diversity and Heterogeneity in Sandy Subsurface Soils,” Applied and Environmental Microbiology, Vol. 70, No. 3, 2004, pp. 1723-1734. doi:10.1128/AEM.70.3.1723-1734.2004
[29] T. A. Johnson, G. K. Sims, T. R. Ellsworth and A. M. Balance, “Effects of Moisture and Sorption on Biodegradation of p-Hydroxybenzoic Acid by Arthrobacter sp.,” Microbiological Research, Vol. 153, No. 4, 1998, pp. 349-353. doi:10.1016/S0944-5013(99)80049-4
[30] D. R. Shelton and T. B. Parkin, “Effect of Moisture on Sorption and Biodegradation of Carbofuran in Soil,” Journal of Agriculture and Food Chemistry, Vol. 39, No. 11, 1991, pp. 2063-2068. doi:10.1021/jf00011a036
[31] M. Mojasevic, C. S. Helling, T. J. Gish and M. A. Doherty, “Persistence of Seven Pesticides as Influenced by Soil Moisture,” Journal of Environmental Science and Health, Vol. 31, No. 3, 1996, pp. 469-476. doi:10.1080/03601239609373009
[32] R. F. Harris, “Effect of Water Potential on Microbial Growth and Activity,” In: D. M. Kral, et al., Eds., Water Potential Relations in Soil Microbiology, Vol. 9, Soil Science Society of America, Madison, 1981, pp. 23-95.
[33] P. Baveye and C. W. Boast, “Physical Scales and Spatial Predictability of Transport Processes in the Environment,” Geophysical Monograph Series, Vol. 108, pp. 261-280.
[34] R. P. Schwarzenbach, P. M. Gschwend and D. M. Imboden, “Environmental Organic Chemistry,” John Wiley & Sons, Inc., New York, 1993.
[35] A. M. Cupples, G. K. Sims, R. P. Hultgren and S. E. Hart, “Effect of Soil Conditions on the Degradation of Cloransulam-Methyl,” Journal of Environmental Quality, Vol. 29, No. 3, 2000, pp. 786-794. doi:10.2134/jeq2000.00472425002900030014x
[36] S. F. Simoni, A. Schafer, H. Harms and A. J. B. Zehnder, “Factors Affecting Mass Transfer Limited Biodegradation in Saturated Porous Media,” Journal of Contaminant Hydrology, Vol. 50, No. 1-2, 2001, pp. 99-120. doi:10.1016/S0169-7722(01)00099-7
[37] L. Y. Wick, T. Colangelo and H. Harms, “Kinetics of Mass Transfer-Limited Bacterial Growth on Solid PAH’s,” Environmental Science and Technology, Vol. 35, No. 2, 2001, pp. 354-361. doi:10.1021/es001384w
[38] G. K. Sims, “Using the Berthelot Method for Nitrite and Nitrate Analysis,” Soil Science Society of America Journal, Vol. 70, No. 3, 2006, p. 1038. doi:10.2136/sssaj2005.0408l
[39] R. Mandelbaum, D. Allan and L. Wackett, “Isolation and Characterization of a Pseudomonas sp. That Mineralizes the s-Triazine Herbicide Atrazine,” Applied and Environmental Microbiology, Vol. 61, No. 4, 1995, pp. 1451-1457.
[40] F. Bichat, G. K. Sims and R. L. Mulvaney, “Microbial Utilization of Heterocyclic Nitrogen from Atrazine,” Soil Science Society of America Journal, Vol. 63, No. 1, 1999, pp. 100-110. doi:10.2136/sssaj1999.03615995006300010016x
[41] G. K. Sims, “Nitrogen Starvation Promotes Biodegradation of N-Heterocyclic Compounds in Soil,” Soil Biology & Biochemistry, Vol. 38, No. 8, 2006, pp. 2478-2480. doi:10.1016/j.soilbio.2006.01.006
[42] M. Radosevich, J. J. Crawford, S. J. Traina, Y. L. Hao and O. H. Tuovinen, “Degradation and Mineralization of Atrazine by a Soil Bacterial Isolate,” Applied and Environmental Microbiology, Vol. 61, No. 1, 1995, pp. 297302.
[43] C. M. Hansen, “Hansen Solubility Parameters: A User’s Handbook,” 2nd Edition, CRC Press Taylor Francis Group, Boca Raton, p. 2007.
[44] T. A. Johnson and G. K. Sims, “Introduction of 2,4-Dichlorophenoxyacetic Acid into Soil with Solvents and Resulting Implications for Bioavailability to Microorganisms,” World Journal of Microbiology and Biotechnology, Vol. 27, No. 5, 2010, pp. 1137-1143. doi:10.1007/s11274-010-0560-y
[45] S. Clay and W. Koskinen, “Adsorption and Desorption of Atrazine, Hydroxyatrazine, and s-Glutathione Atrazine on Two Soils,” Weed Science, Vol. 38, No. 3, 1990, pp. 262266.
[46] S. Houot, E. Topp, A. Yassir and G. Soulas, “Dependence of Accelerated Degradation of Atrazine on Soil pH in French and Canadian Soils,” Soil Biology & Biochemistry, Vol. 32, No. 5, 2000, pp. 615-625. doi:10.1016/S0038-0717(99)00188-1
[47] W. A. Jury and R. Horton, “Soil Physics,” 6th Edition, John Wiley and Sons, Inc., New York, 2004.
[48] A. Walker and D. V. Crawford, “Diffusion Coefficients for Two Triazine Herbicides in Six Soils,” Weed Research, Vol. 10, No. 2, 1970, pp. 126-132. doi:10.1111/j.1365-3180.1970.tb00933.x
[49] R. M. Zablotowicz, M. A. Weaver and M. A. Locke, “Microbial Adaptation for Accelerated Atrazine Mineralization Degradation in Mississippi Delta Soils,” Weed Science, Vol. 54, No. 3, 2006, pp. 538-547. doi:10.1614/WS-04-179R3.1
[50] K. H. Baker and A. L. Mills, “Determination of the Number of Respiring Thiobacillus Ferrooxidans Cells in Water Samples by Using Combined Fluorescent Antibody-2-(pIodophenyl)-3-(p-Nitrophenyl)-5-Phenyltetrazolium Chloride Staining,” Applied and Environmental Microbiology, Vol. 43, No. 2, 1982, pp. 338-344.
[51] L. W. Belser and E. L. Mays, “Use of Nitrifier Activity Measurements to Estimate the Efficiency of Viable Nitrifier Counts in Soils and Sediments,” Applied and Environmental Microbiology, Vol. 43, No. 4, 1982, pp. 945-948.
[52] F. Martin-Laurent, L. Cornet, L. Ranjard, J. C. López-Gutiérrez, L. Philippot, C. Schwartz, R. Chassod, G. Catroux and G. Soulas, “Estimation of Atrazine-Degrading Genetic Potential and Activity in Three French Agricultural Soils,” FEMS Microbiology Ecology, Vol. 48, No. 3, 2004, pp. 425-435. doi:10.1016/j.femsec.2004.03.008
[53] Y. Comeau, C. W. Greer and R. Samson, “Role of Inoculum Preparation and Density on the Bioremediation of 2,4-D-Contaminated Soil by Bioaugmentation,” Applied Microbiology and Biotechnology, Vol. 38, No. 5, 1993, pp. 681-687. doi:10.1007/BF00182810
[54] G. K. Sims and A. M. Cupples, “Factors Controlling Degradation of Pesticides in Soil,” Pesticide Science, Vol. 55, No. 5, 1999, pp. 566-614. doi:10.1002/(SICI)1096-9063(199905)55:5<598::AID-PS962>3.0.CO;2-N
[55] T. Y. Kim, S. S. Park, S. J. Kim and S. Y. Cho, “Separation Characteristics of Some Phenoxy Herbicides from Aqueous Solution,” Adsorption, Vol. 14, No. 5, 2008, pp. 611-619. doi:10.1007/s10450-008-9129-6
[56] L. E. Bode, C. L. Day, M. R. Gebhardt and C. E. Goering, “Mechanism of Trifluralin Diffusion in Silt Loam Soil,” Weed Science, Vol. 21, 1973, pp. 480-484.
[57] J. H. Dane and J. W. Hopmans, “Water Retention and Storage,” In: J. H. Dane and G. C. Topp, Eds., Methods of Soil Analysis, Part 4, Physical Methods, Soil Science Society of America, Madison, 2002, p. 1692.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.