Efficient Routing Using Temporal Distance in Intermittently Connected Mobile Ad-hoc Networks

Abstract

The analysis of real social, biological and technological networks has attracted a lot of attention as technological advances have given us a wealth of empirical data. For, analysis and investigation time varying graphs are used to understand the relationship, contact duration, repeated occurrence of contact. It is under exploring in intermittently connected networks. Now, by extending the same concept in intermittent networks, the efficiency of the routing protocol can be improved. This paper discusses about the temporal characterizing algorithm. Such characterization can help in accurately understanding dynamic behaviors and taking appropriate routing decisions. Therefore, the present research provokes exploring different possibilities of utilizing the same time varying network analyses and designing an Adaptive Routing protocol using temporal distance metric. The adaptive routing protocol is implemented using ONE simulator and is compared with the Epidemic and PropHET for delivery ratio, overhead and the number of dropped messages. The result reveals that Adaptive routing performs better than Epidemic and PropHET for real and synthetic datasets.

Share and Cite:

H. Shah, Y. Kosta and V. Patel, "Efficient Routing Using Temporal Distance in Intermittently Connected Mobile Ad-hoc Networks," Communications and Network, Vol. 5 No. 3, 2013, pp. 264-271. doi: 10.4236/cn.2013.53033.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] T. Spyropoulos, K. Psounis and C. S. Raghavendra, “Single-Copy Routing in Intermittently Connected Mobile Networks,” The First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, 4-7 October 2004, pp. 235-244.
[2] K. Fall, “A Delay-Tolerant Network Architecture for Challenged Internets,” Proceedings of the 2003 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, 2003, pp. 27-34.
[3] V. Kostakos, “Temporal Graphs,” Physica A: Statistical Mechanics and Its Applications, Vol. 388, No. 6, 2009, pp. 1007-1023.
[4] J. Tang, M. Musolesi, C. Mascolo and V. Latora, “Characterising Temporal Distance and Reachability in Mobile and Online Social Networks,” ACM SIGCOMM Computer Communication Review, Vol. 40, No. 1, 2010, pp. 118-124. doi:10.1145/1672308.1672329
[5] E. Nordstrom, P. Gunningberg and C. Rohner, “Haggle: A Data-Centric Network Architecture for Mobile Devices,” Proceedings of the 2009 MobiHoc S3 Workshop on MobiHoc S3, 2009, pp. 37-40.
[6] P.-U. Tournoux, J. Leguay, F. Benbadis, J. Whitbeck, V. Conan and M. Dias de Amorim, “Density-Aware Routing in Highly Dynamic DTNs: The RollerNet Case,” IEEE Transactions on Mobile Computing, Vol. 10, No. 12, 2011, pp. 1755-1768. doi:10.1109/TMC.2010.247
[7] F. Bai and A. Helmy, “IMPORTANT: A Framework to Systematically Analyze the Impact of Mobility on Performance of Routing Protocols for Adhoc Networks,” 22nd Annual Joint Conference of the IEEE Computer and Communications Societies, Vol. 2, 30 March 2003-3 April 2003, pp. 825-835.
[8] J. Tang, M. Musolesi, C. Mascolo and V. Latora, “Temporal Distance Metrics for Social Network Analysis,” Proceedings of the 2nd ACM workshop on Online Social Networks, 2009, pp. 31-36.
[9] J. Zhang, G. Luo, K. Qin and H. Sun, “Encounter-Based Routing in Delay Tolerant Networks,” International Conference on Computational Problem-Solving (ICCP), Chengdu, 21-23 October 2011, pp. 338-341. doi:10.1109/ICCPS.2011.6089802
[10] E. Bulut, Z. Wang and B. K. Szymanski, “Cost Efficient Erasure Coding Based Routing in Delay Tolerant Networks,” IEEE International Conference on Communications, 2010, pp. 1-5. doi:10.1109/ICC.2010.5502382
[11] E. Bulut, Z. Wang, and B. K. Szymanski, “Cost-Effective Multiperiod Spraying for Routing in Delay-Tolerant Networks,” IEEE/ACM Transactions on Networking, Vol. 18, No. 5, 2010, pp. 1530-1543. doi:10.1109/TNET.2010.2043744
[12] A. Keranen, T. Karkkainen and J. Ott, “Simulating Mobility and DTNs with the ONE (Invited Paper),” Journal of Communications, Vol. 5, No. 2, 2010, pp. 92-105.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.