Influence of magnetic iron oxide nanoparticles on red blood cells and Caco-2 cells

Abstract

The interactions of two types of cells (red blood cells, Caco-2 cells) with magnetic iron oxide nanoparticles (non-grafted, citrate-grafted, dendrimer-grafted) of 11 nm in size have been investigated. We focused on two important physiological parameters of the cells, the intracellular pH and the intracellular Ca2+ content. The results show that the nanoparticles do not have a significant influence on the pH and Ca2+ content of Caco-2 cells. The Ca2+ content of red blood cells is also not affected but the intracellular pH is slightly reduced.

Share and Cite:

Moersdorf, D. , Hugounenq, P. , Phuoc, L. , Mamlouk-Chaouachi, H. , Felder-Flesch, D. , Begin-Colin, S. , Pourroy, G. and Bernhardt, I. (2010) Influence of magnetic iron oxide nanoparticles on red blood cells and Caco-2 cells. Advances in Bioscience and Biotechnology, 1, 439-443. doi: 10.4236/abb.2010.15057.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Pankhurst, Q.A., Connolly, J., Jones, S.K. and Dobson, J. (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D: Appl Phys, 36, R167-R181.
[2] Park, K., Lee, S., Kang, E., Kim, K., Choi, K. and Kwon, I.C. (2009) New generation of multifunctional nanoparticles for cancer imaging and therapy. Adv Funct Mater, 19, 1553-1566.
[3] Win, K.Y. and Feng, S. (2005) Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials, 26, 2713-2722.
[4] Hillyer, J.F. and Albrecht, R.M. (2001) Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J Pharm Sci, 90, 1927-1936.
[5] Geiser, M., Rothen-Rutishauser, B., Kapp, N., Schürch, S., Kreyling, W., Schulz, H., Semmler, M., Im Hof, V., Heyder, J. and Gehr, P. (2005) Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect, 113, 1555-1560.
[6] Rothen-Rutishauser, B., Schürch, S., Haenni, B., Kapp, N. and Gehr, P. (2006) Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques. Environ Sci Technol, 40, 4353-4359.
[7] Apopa, P.L., Qian, Y., Shao, R., Guo, N.L., Schwegler-Berry, D., Pacurari, M., Porter, D., Xianglin, S., Vallyathan, V., Castranova, V. and Flynn, D.C. (2009) Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodelling. Part Fibre Toxicol, 6:1.
[8] Daou, T.J., Pourroy, G., Begin-Colin, S., Greneche, C. Ulhaq-Bouillet, J.M., Legare, P., Bernhardt, P., Leuvrey, C. and Rogez, G. (2006) Hydrothermal synthesis of monodisperse magnetite nanoparticles. Chem Mater, 18, 4399-4404.
[9] Daou, T.J., Pourroy, G., Greneche, J.M., Bertin, A., Felder-Flesch, D. and Begin-Colin, S. (2009) Water soluble dendronized iron oxide nanoparticles. Dalton Transactions, 23, 4442-4449.
[10] Basly, B., Felder-Flesch, D., Perriat, P., Billotey, C., Taleb, J., Pourroy, G. and Begin-Colin, S. (2010) Dendronized iron oxide nanoparticles as contrast agents for MRI. Chem Comm, 46, 985-987.
[11] Grinstein, S., Cohen, S. and Rothstein, A. (1984) Cytoplasmic pH regulation in thymic lymphocytes by an amiloride-sensitive Na+/H+ antiport. J Gen Physiol, 83, 341-369.
[12] Kummerow, D., Hamann, J., Browning, J.A., Wilkins, R., Ellory, J.C. and Bernhardt, I. (2000) Variations of intracellular pH in human erythrocytes via K+(Na+)/H+ exchange under low ionic strength conditions. J Membr Biol, 176, 207-216.
[13] Bernhardt, I. and Weiss, E. (2003) Passive membrane permeability for ions and the membrane potential. In: Bernhardt, I. and Ellory, J.C., Eds., Red Cell Membrane Transport in Health and Disease, Springer-Verlag, Berlin, 83-109.
[14] Knauf, P.A. and Pal, P. (2003) Band 3 mediated transport. In: Bernhardt, I. and Ellory, J.C., Eds., Red Cell Membrane Transport in Health and Disease, Springer-Verlag, Berlin, 253-301.
[15] Kaestner, L., Tabellion, W., Weiss, E., Bernhardt, I. and Lipp, P. (2006) Calcium imaging of individual erythrocates: Problems and approaches. Cell Calcium, 39, 13-19.
[16] Bennekou, P. and Christophersen, P. (2003) Ion channels. In: Bernhardt, I. and Ellory, J.C., Eds., Red Cell Membrane Transport in Health and Disease, Springer-Verlag, Berlin, 139-152.
[17] Leveritt, L.B., Hellums, J.D., Alfrey, C.P. and Lynch, E. C. (1972) Red blood cell damage by shear stress. Biophys J, 12, 257-273.
[18] Wan, J., Ristenpart, W.D. and Stone, H.A. (2008) Dynamics of shear-induced ATP release from red blood cells. PNAS, 105, 16432-16437.
[19] Nikinmaa, M. (2003) Gas transport. In: Bernhardt, I. and Ellory, J.C., Eds., Red Cell Membrane Transport in Health and Disease, Springer-Verlag, Berlin, 489-509.
[20] Betz, T., Bakowsky, U., Mueller, M.R., Lehr, C.M. and Bernhardt, I. (2007) Conformational change of membrane proteins leads to shape changes of red blood cells. Bioelectrochemistry, 70, 122-126.
[21] Creanga, D.E., Culea, M., Nadejde, C., Oancea, S., Curecheriu, L. and Racuciu, M. (2009) Magnetic nanoparticle effects on the red blood cells. J Phys: Conf Ser, 170, 012019.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.