Health> Vol.5 No.7E, July 2013

Down-regulation of Rho-kinases induce tolerance in Ischemic preconditioning model after transient cerebral ischemia/reperfusion in rats

DownloadDownload as PDF (Size:317KB)  HTML    PP. 7-13  
Author(s)    Leave a comment

ABSTRACT

Background: Ischemic preconditioning (IPC) is a brief episode of ischemia/reperfusion (I/R) that protects the brain from the damage induced by subsequent prolonged ischemia. Aim: To study the neuroprotective mechanism of IPC. Methods: 30 adult male Wistar rats (150-250 g) were divided into three groups 10 rats in each; the first group was sham-operated and served as a control, I/R group of rats subjected to 30 minutes of left common carotid artery occlusion (CCAO) followed by 24-hour of reperfusion, IPC group were treated with three episodes of 5-minutes of CCAO with 10 minutes of reperfusion in between, followed by 30 minutes of CCAO and then allowed for reperfusion for 24 hours. Neurobehavioral assessments were evaluated; Rhokinases (ROCK) and nitrite were measured in affected cerebral hemisphere. Results: Rats’ neurological deficits were significantly decreased in the I/R compared with the control group (P < 0.001) whereas rats treated by precondition stimuli showed significant improvement in neurological deficit compared to I/R group (P < 0.001). Nitrite level was significantly increased in the IPC rats compared to both control and I/R groups (P < 0.001). In contrast, the ROCK level was significantly higher in I/R group compared to control group and its level significantly decreased in IPC rats when compared to I/R group (P < 0.001). ROCK correlates negatively with the nitrite (CC = -0.695, P = 0.000). Conclusions: Downregulation of ROCK level following preconditioning stimuli with the potential involvement of Nitric oxide (NO) appear to be one of the neuroprotective mechanisms of IPC protection against a subsequent I/R challenge evidence by improvement in the neurological deficits.

Cite this paper

Awooda, H. (2013) Down-regulation of Rho-kinases induce tolerance in Ischemic preconditioning model after transient cerebral ischemia/reperfusion in rats. Health, 5, 7-13. doi: 10.4236/health.2013.57A5002.

References

[1] Smith, W.S. (2004) Pathophysiology of focal cerebral ischemia: A therapeutic perspective. Journal of Vascular and Interventional Radiology, 15, S3-S12. doi:10.1097/01.RVI.0000108687.75691.0C
[2] Miao, Y., Zhang, W., Lin, Y., Lu, X. and Qiu, Y. (2010) Neuroprotective effects of ischemic preconditioning on global brain ischemia through up-regulation of acidsensing ion channel 2a. International Journal of Molecular Sciences, 11, 140-153. doi:10.3390/ijms11010140
[3] Barone, F.C., White, R.F., Spera, P.A., Ellison, J., Currie, R.W., Wang, X. and Feuerstein, G.Z. (1998) Ischemic preconditioning and brain tolerance: Temporal histologycal and functional outcomes, protein synthesis requirement and interleukin-1 receptor antagonist and early gene expression. Stroke, 29, 1937-1950.
[4] Sitzer, M., Foerch, C., Neumann-Haefelin, T., Steinmetz, H., Misselwitz, B., Kugler, C. and Back, T. (2004) Transient ischaemic attack preceding anterior circulation infarction is independently associated with favourable outcome. Journal of Neurology, Neurosurgery & Psychiatry, 75, 659-660. doi:10.1136/jnnp.2003.015875
[5] Stenzel-Poore, M.P., Stevens, S.L., Xiong, Z., Lessov, N.S., Harrington, C.A., Mori, M., Meller, R., Rosenzweig, H.L., Tobar, E., Shaw, T.E., Chu, X. and Simon, R.P. (2003) Effect of ischaemic preconditioning on genomic response to cerebral ischaemia: Similarity to neuroprotective strategies in hibernation and hypoxia-tolerant states. Lancet, 362, 1028-1037. doi:10.1016/S0140-6736(03)14412-1
[6] Dave, K.R., Saul, I., Busto, R., Ginsberg, M.D., Sick, T.J. and Perez-Pinzon, M.A. (2001) Ischemic preconditioning preserves mitochondrial function after global cerebral ischemia in rat hippocampus. Journal of Cerebral Blood Flow & Metabolism, 21, 1401-1410. doi:10.1097/00004647-200112000-00004
[7] Chimon, G.N. and Wong, P.T. (1998) Ischemic tolerance and lipid peroxidation in the brain. Neuroreport, 9, 2269-2272. doi:10.1097/00001756-199807130-00023
[8] Stenzel-Poore, M.P., Stevens, S.L. and Simon, R.P. (2004) Genomics of preconditioning. Stroke, 35, 2683-2686. doi:10.1161/01.STR.0000143735.89281.bb
[9] Garthwaite, J. (2008) Concepts of neural nitric oxide-mediated transmission. European Journal of Neuroscience, 27, 2783-2802. doi:10.1111/j.1460-9568.2008.06285.x
[10] Ito, Y., Ohkubo, T., Asano, Y., Hattori, K., Shimazu, T., Yamazato, M., Nagoya, H., Kato, Y. and Araki, N. (2010) Nitric oxide production during cerebral ischemia and reperfusion in eNOS-and nNOS-knockout mice. Current Neurovascular Research, 7, 23-31. doi:10.2174/156720210790820190
[11] Atochin, D.N., Clark, J., Demchenko, I.T., Moskowitz, M.A. and Huang, P.L. (2003) Rapid cerebral ischemic preconditioning in mice deficient in endothelial and neuronal nitric oxide synthases. Stroke, 34, 1299-1303. doi:10.1161/01.STR.0000066870.70976.57
[12] Offermanns, N.W.S. (2003) Rho/Rho-kinase mediated signaling in physiology and pathophysiology.
[13] Owens, G.K., Kumar, M.S. and Wamhoff, B.R. (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiological Reviews, 84, 767-801. doi:10.1152/physrev.00041.2003
[14] Kamiyama, M., Utsunomiya, K., Taniguchi, K., Yokota, T., Kurata, H., Tajima, N. and Kondo, K. (2003) Contribution of Rho A and Rho kinase to platelet-derived growth factor-BB-induced proliferation of vascular smooth muscle cells. Journal of Atherosclerosis and Thrombosis, 10, 117-123. doi:10.5551/jat.10.117
[15] Ginsberg, M.D. (2003) Adventures in the pathophysiology of brain ischemia: Penumbra, gene expression, neuroprotection: The 2002 Thomas Willis Lecture. Stroke, 34, 214-223. doi:10.1161/01.STR.0000048846.09677.62
[16] Heuschmann, P.U., Berger, K., Misselwitz, B., Hermanek, P., Leffmann, C., Adelmann, M., Buecker-Nott, H.J., Rother, J., Neundoerfer, B. and Kolominsky-Rabas, P.L. (2003) Frequency of thrombolytic therapy in patients with acute ischemic stroke and the risk of in-hospital mortality: The German Stroke Registers Study Group. Stroke, 34, 1106-1113. doi:10.1161/01.STR.0000065198.80347.C5
[17] Kataoka, C., Egashira, K., Inoue, S., Takemoto, M., Ni, W., Koyanagi, M., Kitamoto, S., Usui, M., Kaibuchi, K., Shimokawa, H. and Takeshita, A. (2002) Important role of Rho-kinase in the pathogenesis of cardiovascular inflammation and remodeling induced by long-term blockade of nitric oxide synthesis in rats. Hypertension, 39, 245-250. doi:10.1161/hy0202.103271
[18] Kuluz, J.W., Prado, R.J., Dietrich, W.D., Schleien, C.L. and Watson, B.D. (1993) The effect of nitric oxide synthase inhibition on infarct volume after reversible focal cerebral ischemia in conscious rats. Stroke, 24, 2023-2029. doi:10.1161/01.STR.24.12.2023
[19] Keefer, L.K., Garland, W.A., Oldfield, N.F., Swagzdis, J.E. and Mico, B.A. (1985) Inhibition of N-nitrosodimethylamine metabolism in rats by ether anesthesia. Cancer Research, 45, 5457-5460.
[20] Renolleau, S., Aggoun-Zouaoui, D., Ben-Ari, Y. and Charriaut-Marlangue, C. (1998) A model of transient unilateral focal ischemia with reperfusion in the P7 neonatal rat: Morphological changes indicative of apoptosis. Stroke, 29, 1454-1460. doi:10.1161/01.STR.29.7.1454
[21] Furuya, K., Zhu, L., Kawahara, N., Abe, O. and Kirino, T. (2005) Differences in infarct evolution between lipopolysaccharide-induced tolerant and nontolerant conditions to focal cerebral ischemia. Journal of Neurosurgery, 103, 715-723. doi:10.3171/jns.2005.103.4.0715
[22] Star, R.A. (1998) Treatment of acute renal failure. Kidney International, 54, 1817-1831. doi:10.1046/j.1523-1755.1998.00210.x
[23] Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951) Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193, 265-275.
[24] Montgomery, H.A.C. and Dymock, J. (1961) The determination of nitrite in water. Analyst, 86, 414-416.
[25] Riento, K. and Ridley, A.J. (2003) Rocks: Multifunctional kinases in cell behaviour. Nature Reviews Molecular Cell Biology, 4, 446-456. doi:10.1038/nrm1128
[26] Yano, K., Kawasaki, K., Hattori, T., Tawara, S., Toshima, Y., Ikegaki, I., Sasaki, Y., Satoh, S., Asano, T. and Seto, M. (2008) Demonstration of elevation and localization of Rho-kinase activity in the brain of a rat model of cerebral infarction. European Journal of Pharmacology, 594, 77-83. doi:10.1016/j.ejphar.2008.07.045
[27] Li, Q., Huang, X.J., He, W., Ding, J., Jia, J.T., Fu, G., Wang, H.X. and Guo, L.J. (2009) Neuroprotective potential of fasudil mesylate in brain ischemia-reperfusion injury of rats. Cellular and Molecular Neurobiology, 29, 169-180. doi:10.1007/s10571-008-9308-8
[28] Feske, S.K., Sorond, F.A., Henderson, G.V., Seto, M., Hitomi, A., Kawasaki, K., Sasaki, Y., Asano, T. and Liao, J.K. (2009) Increased leukocyte ROCK activity in patients after acute ischemic stroke. Brain Research, 1257, 89-93. doi:10.1016/j.brainres.2008.12.045
[29] Zhang, J., Yang, Z.J., Klaus, J.A., Koehler, R.C. and Huang, J. (2008) Delayed tolerance with repetitive transient focal ischemic preconditioning in the mouse. Stroke, 39, 967-974. doi:10.1161/STROKEAHA.107.497412
[30] Kapinya, K., Penzel, R., Sommer, C. and Kiessling, M. (2000) Temporary changes of the AP-1 transcription factor binding activity in the gerbil hippocampus after transient global ischemia and ischemic tolerance induction. Brain Research, 872, 282-293. doi:10.1016/S0006-8993(00)02503-8
[31] Xuan, Y.T., Guo, Y., Zhu, Y., Wang, O.L., Rokosh, G. and Bolli, R. (2007) Endothelial nitric oxide synthase plays an obligatory role in the late phase of ischemic preconditioning by activating the protein kinase C epsilon p44/42 mitogen-activated protein kinase pSer-signal transducers and activators of transcription1/3 pathway. Circulation, 116, 535-544. doi:10.1161/CIRCULATIONAHA.107.689471
[32] Zhou, L. and Zhu, D.Y. (2009) Neuronal nitric oxide synthase: Structure, subcellular localization, regulation and clinical implications. Nitric Oxide, 20, 223-230. doi:10.1016/j.niox.2009.03.001
[33] Hirabayashi, H., Takizawa, S., Fukuyama, N., Nakazawa, H. and Shinohara, Y. (2000) Nitrotyrosine generation via inducible nitric oxide synthase in vascular wall in focal ischemia-reperfusion. Brain Research, 852, 319-325. doi:10.1016/S0006-8993(99)02117-4
[34] Hata, R., Maeda, K., Hermann, D., Mies, G. and Hossmann, K.A. (2000) Evolution of brain infarction after transient focal cerebral ischemia in mice. Journal of Cerebral Blood Flow & Metabolism, 20, 937-946. doi:10.1097/00004647-200006000-00006
[35] Margaill, I., Allix, M., Charriaut-Marlangue, C., Boulu, R.G. and Plotkine, M. (1995) Loss of NADPH-diaphorase containing neurones after reversible focal ischaemia in rats delayed by L-NAME. British Journal of Pharmacology, 116, 2344-2345. doi:10.1111/j.1476-5381.1995.tb15076.x
[36] Kader, A., Frazzini, V.I., Solomon, R.A. and Trifiletti, R.R. (1993) Nitric oxide production during focal cerebral ischemia in rats. Stroke, 24, 1709-1716. doi:10.1161/01.STR.24.11.1709
[37] Cui, X., Chopp, M., Zacharek, A., Zhang, C., Roberts, C. and Chen, J. (2009) Role of endothelial nitric oxide synthetase in arteriogenesis after stroke in mice. Neuroscience, 159, 744-750. doi:10.1016/j.neuroscience.2008.12.055
[38] Zhao, X., Haensel, C., Araki, E., Ross, M.E. and Iadecola, C. (2000) Gene-dosing effect and persistence of reduction in ischemic brain injury in mice lacking inducible nitric oxide synthase. Brain Research, 872, 215-218. doi:10.1016/S0006-8993(00)02459-8
[39] Fagan, K.A., Oka, M., Bauer, N.R., Gebb, S.A., Ivy, D.D., Morris, K.G. and McMurtry, I.F. (2004) Attenuation of acute hypoxic pulmonary vasoconstriction and hypoxic pulmonary hypertension in mice by inhibition of Rhokinase. American Journal of Physiology—Lung Cellular and Molecular Physiology, 287, L656-L664. doi:10.1152/ajplung.00090.2003
[40] Laufs, U. and Liao, J.K. (1998) Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase. The Journal of Biological Chemistry, 273, 24266-24271. doi:10.1074/jbc.273.37.24266
[41] Ming, X.F., Viswambharan, H., Barandier, C., Ruffieux, J., Kaibuchi, K., Rusconi, S. and Yang, Z. (2002) Rho GTPase/Rho kinase negatively regulates endothelial nitric oxide synthase phosphorylation through the inhibition of protein kinase B/Akt in human endothelial cells. Molecular and Cellular Biology, 22, 8467-8477. doi:10.1128/MCB.22.24.8467-8477.2002
[42] Shin, H.K., Salomone, S., Potts, E.M., Lee, S.W., Millican, E., Noma, K., Huang, P.L., Boas, D.A., Liao, J.K., Moskowitz, M.A. and Ayata, C. (2007) Rho-kinase inhibition acutely augments blood flow in focal cerebral ischemia via endothelial mechanisms. Journal of Cerebral Blood Flow & Metabolism, 27, 998-1009.

comments powered by Disqus

Copyright © 2014 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.