Electromagnetically Induced Transparency Using a Artificial Molecule in Circuit Quantum Electrodynamics

Abstract

Electromagnetically induced transparency (EIT) having wide applications in quantum optics and nonlinear optics is explored ordinarily in various atomic systems. In this paper we present a theoretical study of EIT using supercon- ducting circuit with a V-type artificial molecule constructed by two Josephson charge qubits coupled each other through a large capacitor. In our theoretical model we make a steady state approximation and obtain the analytical expressions of the complex susceptibility for the artificial system via the density matrix formalism. The complex susceptibility has additional dependence on the qubit parameters and hence can be tuned to a certain extent.

Share and Cite:

H. Li and G. Ge, "Electromagnetically Induced Transparency Using a Artificial Molecule in Circuit Quantum Electrodynamics," Optics and Photonics Journal, Vol. 3 No. 2B, 2013, pp. 29-33. doi: 10.4236/opj.2013.32B007.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, “Continuouswave Electromagnetically Induced Transparency: a Comparison of V, Λ, and Cascade Systems,” Physical Review A, Vol. 52, No. 3, 1995, pp. 2302-2311. doi: 10.1103/PhysRevA.52.2302
[2] M. Fleischhauer, A. Imamoglu and J. P. Marangos, “Electromagnetically Induced Transparency: Optics in Coherent Media,” Reviews of Modern Physics, Vol. 77, No. 2, 2005, pp. 633-673. doi:10.1103 /RevModPhys.77.633
[3] K. J. Boller, A. Imamoglu and S. E. Harris, “Observation of Electromagnetically Induced Transparency,” Physical Review Letters, Vol. 66, No. 20, 1991, pp. 2593-2596. doi: 10.1103/PhysRevLett.66.2593
[4] A. Lazoudis, T. Kirova, E. H. Ahmed, P. Qi, J. Huennekens and A. M. Lyyra, “Electromagnetically Induced Transparency in an Open V-type Molecular System,” Physical Review A, Vol. 83, No. 6, 2011, pp. 063419. doi: 10.1103/PhysRevA.83.063419
[5] J. GeaBanacloche, Y. Q. Li, S. Z. Jin and Min Xia, “Electromagnetically Induced Transparency in Ladder- type Inhomogeneously Broadened Media: Theory and Experiment,” Physical Review A, Vol. 51, No. 1, 1995, pp. 576-584. doi: 10.1103/PhysRevA.51.576
[6] S. Wielandy and A. L. Gaeta, “Investigation of electromagnetically induced transparency in the strong probe regime,” Physical Review A, Vol. 58, No. 3, 1998, pp. 2500-2505. doi: 10.1103/PhysRevA.58.2500
[7] J. Q. You and F. Nori, “Atomic Physics and Quantum Optics Using Superconducting Circuits,” Nature, Vol. 474, No. 7353, 2011, pp. 589-597. doi: 10.1038/nature10122
[8] S. M. Girvin, M. H. Devoret and R. J. Schoelkopf, “Circuit QED and Engineering Charge-based Superconducting Qubits,” Physica Scripta, Vol. 2009, No. T137, 2009, pp. 014012. doi:10.1088/0031-8949/2009/T137/014012
[9] J. Q. You and F. Nori, “Superconducting Circuits and Quantum Information,” Physics Today, Vol. 58, No. 11, 2005, pp. 42-47. doi: 10.1063/1.2155757
[10] Y. A. Pashkin, O. Astafiev, T. Yamamoto, Y. Nakamura and J. S. Tsai, “Josephson Charge Qubits: a Brief Review,” Quantum Information Processing, Vol. 8, 2009, pp. 55-80. doi: 10.1007/s11128-009-0101-5
[11] B. C. Sanders, “Quantum Optics in Superconducting Circuits,” AIP Conference Proceedings, Vol. 1398, 2011, pp. 46-49. doi: 10.1063/1.3644209
[12] Y. Hu, G. Q. Ge, S. Chen, X. F. Yang and Y. L. Chen, “Cross-Kerr-effect Induced by Coupled Josephson Qubits in Circuit Quantum Electrodynamics,” Physical Review A, Vol. 84, No. 1, 2011, p. 012329. doi: 10.1103/PhysRevA.84.012329
[13] S. Rebic, J. Twamley and G. J. Milburn, “Giant Kerr Nonlinearities in Circuit Quantum Electrodynamics,” Physical Review Letters, Vol. 103, No. 15, 2009, p. 150503. doi: 10.1103/PhysRevLett.103.150503
[14] O. Astafiev et al., “Resonance Fluorescence of a Single Artificial Atom,” Science, Vol. 327, No. 5967, 2010, pp. 840-843. doi: 10.1126/science.1181918
[15] M. A. Sillanpää et al., “Autler-Townes Effect in a Superconducting Three-Level System,” Physical Review Letters, Vol. 103, No. 19, 2009, p. 193601. doi: 10.1103/PhysRevLett.103.193601
[16] A. A. Abdumalikov, Jr., O. Astafiev, A. M. Zagoskin, Yu. A. Pashkin, Y. Nakamura and J. S. Tsai, “Electromagnetically Induced Transparency on a Single Artificial Atom,” Physical Review Letters, Vol. 104, No. 19, 2010, p. 193601. doi: 10.1103/PhysRevLett.104.193601
[17] J. Joo, J. Bourassa, A. Blais and B. C. Sanders, “Electromagnetically Induced Transparency with Amplification in Superconducting Circuits,” Physical Review Letters, Vol. 105, No. 7, 2010, p. 073601. doi: 10.1103/PhysRevLett.105.073601
[18] T. Niemczyk et al., “Circuit Quantum Electrodynamics in the Ultra-strong-coupling Regime,” Nature Physics, Vol. 6, No. 10, 2010, pp. 772-776. doi: 10.1038/nphys1730
[19] K. V. R. M. Murali, Z. Dutton, W. D. Oliver, D. S. Crankshaw and T. P. Orlando, “Probing Decoherence with Electromagnetically Induced Transparency in Superconductive Quantum Circuits,” Physical Review Letters, Vol. 93, No. 8, 2004, pp. 087003. doi: 10.1103/PhysRevLett.93.087003
[20] X. Z. Yuan, H. S. Goan, C. H. Lin, K. D. Zhu and Y. W. Jiang, “Nanomechanical-resonator-assisted Induced Transparency in a Cooperpair Box System,” New Journal of Physics, Vol. 10, 2008, p. 095016. doi: 10.1088/1367-2630/10/9/095016
[21] G. R. Welch, “Observation of V-Type Electromagnetically Induced Transparency in a Sodium Atomic Beam,” Foundations of Physics, Vol.28, No. 4, 1998, pp. 621-638. doi: 10.1023/A:1018765706887

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.