On the M-σ Relationship and SMBH Mass Estimates of Selected Nearby Galaxies

Download Download as PDF (Size:713KB)  HTML    PP. 1-9  
DOI: 10.4236/ijaa.2013.33A001    1,909 Downloads   4,170 Views  


Super massive black holes are believed to influence galactic evolution and dynamics. A histogram of SMBH masses for different redshift regimes may reveal clues on how the SMBH evolve in time. A prominent method for SMBH mass estimation is based on the linear correlation between the bulge velocity dispersion and the SMBH mass. Known as M-σ relationship, this method is known to provide reasonable but not very accurate mass estimates due to considerable scatter in data. In order to increase the precision, we surveyed the literature and gathered SMBH and velocity dispersion data for low redshift (z < 0.02) spiral galaxies. We report the M-σ relationship for low redshift spiral galaxies as,

By using this refined M-σ relationship we measured 32 SMBH masses and determined upper and lower mass boundaries and the mass histogram for spiral galaxies in a narrow redshift regime (0.016 < z < 0.017). The spectroscopic data are obtained from The SLOAN Digital Survey and The National Observatory of Turkey (TUG). The targets are selected within a low redshift range for discernible [OIII] lines. TUG observations are carried out on the RTT150 1.5 m telescope using TUG Faint Object Spectrographic Camera and the SLOAN data are obtained from the 7th data release of the survey. We measured the bandwidths of narrow [OIII] lines, which are shown to be indicative in estimating stellar bulge velocity dispersion and estimated the central black hole masses from the refined version of the empirical M-σ relationship. The estimated masses vary between 9.51 × 106 - 2.36 × 108 solar masses.

Cite this paper

A. Ateş, C. Kılınç and C. İbanoğlu, "On the M-σ Relationship and SMBH Mass Estimates of Selected Nearby Galaxies," International Journal of Astronomy and Astrophysics, Vol. 3 No. 3A, 2013, pp. 1-9. doi: 10.4236/ijaa.2013.33A001.


[1] A. M. Ghez, et al., “Measuring Distance and Properties of the Milky Way’s Central Supermassive Black Hole with Stellar Orbits,” Astrophysical Journal, Vol. 689, No. 2, 2008, pp. 1044-1062. doi:10.1086/592738
[2] A. Dressler and D. O. Richstone, “Stellar Dynamics in the Nuclei of M31 and M32—Evidence for Massive Black Holes?” Astrophysical Journal, Vol. 324, 1988, pp. 701-713. doi:10.1086/165930
[3] J. Kormendy, “Evidence for a Supermassive Black Hole in the Nucleus of M31,” Astrophysical Journal, Vol. 325, 1988, pp. 128-141. doi:10.1086/165988
[4] L. J. Greenhill, J. M. Moran and J. R. Herrnstein, “The Distribution of H2O Maser Emission in the Nucleus of NGC 4945,” Astrophysical Journal Letters, Vol. 481, No. 1, 1997, p. L23. doi:10.1086/310643
[5] N. J. McConnell, et al., “Two Ten-Billion-Solar-Mass Black Holes at the Centres of Giant Elliptical Galaxies,” Nature, Vol. 480, No. 7376, 2012, pp. 215-218. doi:10.1038/nature10636
[6] R. Martin, “Black Hole Models for Active Galactic Nuclei,” Annual Review of Astronomy and Astrophysics, Vol. 22, 1984, pp. 471-506. doi:10.1146/annurev.aa.22.090184.002351
[7] D. Alan, “Observational Evidence for Supermassive Black Holes Active Galactic Nuclei,” Proceedings of the 134th Symposium of the International Astronomical Union, Kluwer Academic Publishers, Dordrecht, 1989, p. 217.
[8] J. Magorrian, et al., “The Demography of Massive Dark Objects in Galaxy Centers,” The Astronomical Journal, Vol. 115, No. 6, 1998, pp. 2285-2305. doi:10.1086/300353
[9] D. Richstone, et al., “Supermassive Black Holes and the Evolution of Galaxies,” Nature, Vol. 395, No. 6701, 1998, pp. A14-A19.
[10] L. Ferrarese and D. Meritt, “A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies,” The Astrophysical Journal, Vol. 539, No. 1, 2000, pp. L9-L12. doi:10.1086/312838
[11] K. Gebhardt, et al., “A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion,” Astrophysical Journal, Vol. 539, No. 1, 2000, p. L13. doi:10.1086/312840
[12] N. H?ring and H. W. Rix, “On the Black Hole MassBulge Mass Relation,” The Astrophysical Journal, Vo. 604, No. 2, 2004, pp. L89-L92. doi:10.1086/383567
[13] S. Kaspi, et al., “Reverberation Measurements for 17 Quasars and the Size-Mass-Luminosity Relations in Active Galactic Nuclei,” The Astrophysical Journal, Vol. 533, 2000.
[14] C. H. Nelson, “Black Hole Mass, Velocity Dispersion, and the Radio Source in Active Galactic Nuclei,” Astrophysical Journal, Vol. 544, No. 2, 2000, pp. L91-L94. doi:10.1086/317314
[15] T. Boroson, “Does the Narrow [O III] l5007 Line Reflect the Stellar Velocity Dispersion in Active Galactic Nuclei?” Astrophysical Journal, Vol. 585, No. 2, 2003, pp. 647-652. doi:10.1086/346111
[16] K. Gültekin, et al., “The M-σ and M-L Relationd in Galactic Bulges, and Determinations of Their Intrinsic Scatter,” The Astrophysical Journal, Vol. 698, 2009, pp. 198-221. doi:10.1088/0004-637X/698/1/198
[17] C. Nelson, A. Plasek, A. Thompson, R. Gelderman and T. Monroe, “[OIII] Emission Line Profiles in PG Quasars,” ASP Conference Series, Vol. 311, Astronomical Society of the Pacific, San Francisco, 2004, p. 83.
[18] K. Gültekin, “Determination of the Intrinsic Scatter in the M-Sigma and M-L Relations,” 2009.
[19] B. M. Peterson, et al., “Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II A Homogeneous Analysis of a Large Reverberation-Mapping Database,” Astrophysical Journal, Vol. 613, 2004, pp. 682-699.
[20] S. P. Rusli, et al., “The Central Black Hole Mass of the High-σ but Low-Bulge-Luminosity Lenticular Galaxy NGC 1332,” Monthly Notices of the Royal Astronomical Society, Vol. 410, No. 2, 2011, pp. 1223-1236. doi:10.1111/j.1365-2966.2010.17610.x
[21] C. J. Grier, et al., “Reverberation Mapping Results for Five Seyfert 1 Galaxies,” Astrophysical Journal, Vol. 755, No. 1, 2012, 16 p.
[22] E. Emsellem, H. Dejonghe and B. Roland, “Dynamical Models of NGC 3115,” Monthly Notices of the Royal Astronomical Society, Vol. 303, No. 3, 1999, pp. 495-514. doi:10.1046/j.1365-8711.1999.02210.x
[23] K. Gebhardt, et al., “Black Hole Mass Estimates from Reverberation Mapping and Spatially Resolved Kinematics,” Astrophysical Journal, Vol. 543, No. 1, 2000, pp. L5-L8. doi:10.1086/318174
[24] A. J. Barth, et al., “The Lick AGN Monitoring Project 2011: Reverberation Mapping of Markarian 50,” The Astrophysical Journal Letters, Vol. 743, No. 1, 2011, p. L4. doi:10.1088/2041-8205/743/1/L4
[25] N. Cretton and F. C. van den Bosch, “Evidence for a Massive Black Hole in the S0 Galaxy NGC 4342,” ASP Conference Series, Vol. 182, 1999.
[26] J. Kormendy, “Evidence for a Central Dark Mass in NGC 4594 (the Sombrero Galaxy),” Astrophysical Journal, Vol. 335, 1988, pp. 40-56. doi:10.1086/166904
[27] A. Beifiori, et al., “Upper Limits on the Masses of 105 Supermassive Black Holes from Hubble Space Telescope/ Space Telescope Imaging Spectrograph Archival Data,” The Astrophysical Journal, Vol. 692, No. 1, 2009, pp. 856-868. doi:10.1088/0004-637X/692/1/856
[28] K. Gebhardt, et al., “The Black Hole Mass and Extreme Orbital Structure in NGC 1399,” The Astrophysical Journal, Vol. 671, No. 2, 2007, pp. 1321-1328. doi:10.1086/522938
[29] L. Ferrarese, H. C. Ford and W. Jaffe, “Evidence for a Massive Black Hole in the Active Galaxy NGC 4261 from Hubble Space Telescope Images and Spectra,” Astrophysical Journal, Vol. 470, 1996, p. 444.
[30] G. A. Bower, et al., “Kinematics of the Nuclear Ionized Gas in the Radio Galaxy M84 (NGC 4374),” Astrophysical Journal Letters, Vol. 492, 1998, p. L111.
[31] K. Gebhardt and J. Thomas, “The Black Hole Mass, Stellar Mass-to-Light Ratio, and Dark Halo in M87,” The Astrophysical Journal, Vol. 700, No. 2, 2009, pp. 1690-1701. doi:10.1088/0004-637X/700/2/1690
[32] L. Ferrarese and H. C. Ford, “Nuclear Disks of Gas and Dust in Early-Type Galaxies and the Hunt for Massive Black Holes: Hubble Space Telescope Observations of NGC 6251,” The Astrophysical Journal, Vol. 515, No. 2, 1999, pp. 583-602. doi:10.1086/307046
[33] R. P. van der Marel and F. C. van den Bosch, “Evidence for a 3 108 Msun Black Hole in NGC 7052 from Hubble Space Telescope Observations of the Nuclear Gas Disk,” Astronomical Journal, Vol. 116, No. 5, 1998, pp. 2220-2236. doi:10.1086/300593
[34] M. Cappellari, et al., “The Counterrotating Core and the Black Hole Mass of IC 1459,” Astrophysical Journal, Vol. 578, No. 2, 2002, pp. 787-805. doi:10.1086/342653
[35] G. De Vaucouleurs, et al., 3rd Reference Catalogue of Bright Galaxies (v.3.9), Springer-Verlag, New York, 1991.

comments powered by Disqus

Copyright © 2017 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.