Comparative Study on Heavy Metals Biosorption by Different Types of Bacteria

Abstract

Biosorption of Cd(II), Ag(I) and Au(III) by cyanobacteria Spirulina platensis, of Au(II)—by Streptomyces spp. 19H, and of Cr(VI) and Cr(III)—by Arthrobacter species was studied by using the dialysis and atomic absorption analysis under various conditions. In particular, the impact of the following parameters on biosorption was studied: pH (for Ag, Cd, Au), living and non-living cells (for Cr), heavy metal valence (for Cr), homogenized and non-homogenized cells (for Au), Zn(II) ions (on Cr(VI)—Arthrobacter species). It was shown that biosorption efficiency of Cr(III), Cr(VI), Cd(II), Au(III) and Ag(I) ions is likely to depend on the type of bacteria used as well as on the conditions under which the uptake processes proceeded. It was shown that metal removal by microorganisms was influenced by physical-chemical parameters. The pH value of 7.0 was optimum for the removal of Ag(I) and Cd(II) by Spirulina platensis. At a low pH value of 5.5, Au (III) was by test algae more efficiently than Cd(II) and Ag(I).

Share and Cite:

E. Gelagutashvili, "Comparative Study on Heavy Metals Biosorption by Different Types of Bacteria," Open Journal of Metal, Vol. 3 No. 2A, 2013, pp. 62-67. doi: 10.4236/ojmetal.2013.32A1008.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. A. Qureshi, J. D. Garlich and M. T. Kidd, “Dietary Spirulina platensis Enhances Humoral and Cell-Mediated Immune Functions in Chickens,” Immunopharmacology and Immunotoxicology, Vol. 18, No. 3, 1996, pp. 465-476. doi:10.3109/08923979609052748
[2] M. Borisev, S. Pajevic, N. Nikolic, A. Pilipovic, B. Krstic and S. Orlovic, “Phytoextraction of Cd, Ni and Pb Using Four Willow Clones (Salix spp.),” Polish Journal of Environmental Studies, Vol. 18, No. 4, 2009, p. 553.
[3] S. K. Ali and A. M. Saleh, “Spirulina—An Overview,” International Journal of Pharmacy and Pharmaceutical Sciences, Vol. 4, No 3, 2012, pp. 9-15.
[4] S. K. Soni, K. Agrawal, S. K. Srivastava, S. Gupta and C. K. Pankaj, “Growth Performance and Biochemical Analysis of Spirulina platensis under Different Culture Conditions,” Journal of Algal Biomass Utilization, Vol. 3, No. 1, 2012, pp. 55-58.
[5] N. Albert, R. Wague, M. Mbailao and N. Fabienne, “Changes in the Physico-Chemical Properties of Spirulina platensis from Three Production Sites in Chad,” Journal of Animal & Plant Sciences, Vol. 13, No. 3, 2012, pp. 1811-1822.
[6] A. Ahmad, R. Ghufran and Z. A. Wahid, “Cd, As, Cu, and Zn Transfer through Dry to Rehydrated Biomass of Spirulina platensis from Wastewater,” Polish Journal of Environmental Studies, Vol. 19, No. 5, 2010, pp. 887-893.
[7] M. Ghaedi, E. Asadpour and A. Vafaie, “Sensitized Spectrophotometric Determination of Cr(III) Ion for Speciation of Chromium Ion in Surfactant Media Using Benzoin Oxime,” Spectrochimica Acta, Part A, Vol. 63, No. 1, 2006, pp. 182-188. doi:10.1016/j.saa.2005.04.049
[8] J. P. Guggenbichler, M. Boswald, S. Lugauer and T. Krall, “A New Technology of Microdispersed Silver in Polyurethane Induces Antimicrobial Activity in Central Venous Catheters,” Infection, Vol. 27, No. 1, 1999, pp. 16-23. doi:10.1007/BF02561612
[9] M. F. Lengka, B. Ravel, M. E. Fleet, G. Wanger, R. A. Gordon and G. Southam, “Mechanisms of Gold Bioaccumulation by Filamentous Cyanobacteria from Gold(III)-Chloride Complex,” Environmental Science & Technology, Vol. 40, No. 20, 2006, pp. 6304-6309. doi:10.1021/es061040r
[10] V. Karamuchka and G. M. Gadd, “Interaction of Saccharomyces cerevisiae with Gold: Toxicity and Accumulation,” Biometals, Vol. 12, No. 4, 1999, pp. 289-294. doi:10.1023/A:1009210101628
[11] I. Savvaidis, V. I. Karamushka, H. Lee and J. T. Trevors, “Microorganism-Gold Interactions,” Biometals, Vol. 11, No. 1, 1998, pp. 69-78. doi:10.1023/B:BIOM.0000030925.56070.56
[12] N. Y. Tsibakhashvili, L. M. Mosulishvili, T. L. Kalabegishvili, D. T. Pataraya, M. A. Gurielidze, G. S. Nadareishvili and H.-Y. Holman, “Chromate-Resistant and Reducing Microorganisms in Georgia Basalts: Their Distribution and Characterization,” Fresenius Environmental Bulletin, Vol. 11, No. 7, 2002, pp. 352-361.
[13] L. Mosulishvili, A. Belokobilsky, E. Gelagutashvili, A. Rcheulishvili and N. Tsibakhashvili, “The Study of the Mechanism of Cadmium Accumulation during the Cultivation of Spirulina Platensis,” Proceedings of the Georgian Academy of Sciences Biological Series, Vol. 23, No. 1-6, 1997, pp. 105-113.
[14] N. Y. Tsibakhashvili, E. I. Kirkesali, D. T. Pataraya, M. A. Gurielidze, T. L. Kalabegishvili, D. N. Gvarjaladze, G. T. Tsertsvadze, M. V. Frontasyeva, I. I. Zinicovskaia, M. S. Wakstein, S. N. Khakhanov, N. V. Shvindina and V. Y. Shklover, “Microbial Synthesis of Silver Nanoparticles by Streptomyces glaucus and Spirulina platensis,” International Journal Advanced Science Letters, Vol. 4, No. 11-12, 2011, pp. 1-10.
[15] H. Freundlich, “Adsorption in Solutions,” Journal of Physical Chemistry, Vol. 57, 1906, pp. 384-410.
[16] N. Kuyucak and B. Volesky, “Biosorbents for Recovery of Metals from Industrial Solutions,” Biotechnology Letters, Vol. 10, No. 2, 1988, pp. 137-142. doi:10.1007/BF01024641
[17] R. M. Perez Silva, A. A. Rodriguez, J. G. Montes De Oca and D. C. Moreno, “Biosorption of Chromium, Copper, Manganese and Zinc by Pseudomonas aeruginosa AT18 Isolated from a Site Contaminated with Petroleum,” Bioresource Technology, Vol. 100, No. 4, 2009, pp. 1533-1538. doi:10.1016/j.biortech.2008.06.057
[18] A. H. Elrefaii, L. A. Sallam and A. A. Hamdy, “Optimization of Some Heavy Metals Biosorption by Representative Egyptian Marine Algae,” Journal of Phycology, Vol. 48, No. 2, 2012, pp. 471-474. doi:10.1111/j.1529-8817.2012.01114.x
[19] J. I. Nirmal Kumar, C. Oommen and R. N. Kumar, “Biosorption of Heavy Metals from Aqueous Solution by Green Marine Macroalgae from Okha Port, Gulf of Kutch, India,” American-Eurasian Journal of Agricultural & Environmental Sciences, Vol. 6, No. 3, 2009, pp. 317-323.
[20] M. G. Gadd and C. White, “Microbial Treatment of Metal Pollution—A Working Biotechnology,” Trends in Biotechnology, Vol. 11, No. 8, 1993, pp. 353-359. doi:10.1016/0167-7799(93)90158-6
[21] T. R. Muraleedharan, L. Iyengar and C. Venkobacher, “Biosorption: An Attractive Alternative for Metal Removal and Recovery,” Current Science, Vol. 61, 1991, pp. 379-385.
[22] Y. P. Tin, F. Lawson and I. G. Prince, “Uptake Cadmium and Zinc by the Chlorella vudguris: Part II. Multi-Ion Situation,” Biotechnology and Bioengineering, Vol. 37, No. 5, 1991, pp. 445-455. doi:10.1002/bit.260370506
[23] D. L. Parker, C. RaiL, N. Mallick, P. K. Rai and H. D. Kumar, “Effects of Cellular Metabolism and Viability on Metal Ion Accumulation by Cultured Biomass from a Bloom of Microcytis aeruginosa,” Applied and Environmental Microbiology, Vol. 64, 1998, pp. 1545-1547.
[24] D. Park, Y.-S., Yun and J. M. Park, “Studies on Hexavalent Chromium Biosorption by Chemically-Treated Biomass of Ecklonia sp.,” Chemosphere, Vol. 60, No. 10, 2005, pp. 1356-1364. doi:10.1016/j.chemosphere.2005.02.020
[25] O. Hammouda, A. Gaber and N. Raouf-Abdel, “Microalgae and Wastewater Treatment,” Ecotoxicology and Environmental Safety, Vol. 31, No. 3, 1995, pp. 205-210. doi:10.1006/eesa.1995.1064
[26] E. D. Van Hullebusch, M. H. Zandvoort and P. N. L. Lens, “Metal Immobilization by Biofilms. Mechanisms and Analytical Tools,” Reviews in Environmental Science and Bio/Technology, Vol. 2, 2003, pp. 9-33.
[27] H. B. Xue and L. Sigg, “The Binding of Heavy Metals to Algae Surfaces,” Water Research, Vol. 22, No. 7, 1990, pp. 917-926. doi:10.1016/0043-1354(88)90029-2
[28] K. J. Wilkinson and J. Buffle, “Physicochemical Kinetics and Transport at Chemical-Biological Interphases,” John Wiley, Chichester, 2004, p. 445. doi:10.1002/0470094044.ch10

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.