The Effect of Compositional Variation on Physical Properties of Te9Se72Ge19-XSbx (X = 8, 9, 10, 11, 12) Glassy Material

Abstract

The quaternary chalcogenide glass Te9Se72Ge19-xSbx (x = 8, 9, 10, 11, 12) has been prepared by the melt quench technique. The material fragility increases due to decrease in degree of cross linking in glass matrix as the Sb content increases. The heat of atomization decreases due to lower value of heat of atomization of antimony. The glass transition temperature is calculated by Tichy-Ticha and Lankhorst approaches. The glass seems to have high value of glass transition temperature as per theoretical calculations and is monotonically decreasing with increasing Sb content because increasing concentration of Sb reduces the cohesive energy and mean bond energy of the material.

Share and Cite:

A. Nidhi, V. Modgil and V. Rangra, "The Effect of Compositional Variation on Physical Properties of Te9Se72Ge19-XSbx (X = 8, 9, 10, 11, 12) Glassy Material," New Journal of Glass and Ceramics, Vol. 3 No. 3, 2013, pp. 91-98. doi: 10.4236/njgc.2013.33015.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] N. Mehta, “Application of Chalcogenide Glasses in Electronics and Optoelectronics: A Review,” Journal of Scientific and Industrial Research, Vol. 65, No. 10, 2006, pp. 777-786.
[2] S. R. Ovshinsky, “Reversible Electrical Switching Phenomena in Disordered Structures,” Physical Review Letters, Vol. 21, 1968, pp. 1450-1453. doi:10.1103/PhysRevLett.21.1450
[3] J. R. Gannon, “Materials for Mid-Infrared Waveguides,” SPIE, Vol. 266, 1981, pp. 62-68. doi:10.1117/12.959899
[4] S. M. El-Sayed, H. M. Saad, G. A. Amin, F. M. Hafez and M. Abd-EI-Rahman, “Physical Evolution in Network Glasses of the Ag As Te System,” Journal of Physics and Chemistry of Solids, Vol. 68, No. 5-6, 2007, pp. 1040-1045. doi:10.1016/j.jpcs.2006.12.033
[5] X. Zhang., H. Ma and J. Lucas, “Application of Chalcogenide Glass Bulk and Fibres,” Journal of Optoelectronics and Advanced Materials, Vol. 5, No. 5, 2003, pp. 1327-1333.
[6] N. Kushwaha, V. S. Kushwaha, R. K. Shukla and A. Kumar, “Effect of Lead Additive on Photoconductive Properties of Se-Te Chalcogenide Films,” Journal of Non- Crystalline Solids, Vol. 351, No. 43-45, 2005, pp. 3414-3420. doi:10.1016/j.jnoncrysol.2005.09.011
[7] S. A. Khan, M. Zulfequar and M. Husain, “On the Crystallization Kinetics of Amorphous Se80In20-xPbx,” Solid State Communications, Vol. 123, No. 10, 2002, pp. 463-468. doi:10.1016/S0038-1098(02)00147-3
[8] S. A. Fayek, M. Fadel, M. O. Abou-Helal and A. M. Shakra, “Kinetic Study of Non Isothermal Crystallization in SeGeX {X=0, Bi, In and Sb} Chalcogenide Glasses,” Chalcogenide Letters, Vol. 5, No. 12, 2008, pp. 317-331.
[9] R. Chiba, N. Funakoshi, “Crystallization of Vacuum Deposited Te Se Cu Alloy Film,” Journal of Non-Crystalline Solids, Vol. 105, No. 1-2, 1988, pp. 149-154. doi:10.1016/0022-3093(88)90349-3
[10] R. Tintu, V. P. N. Nampoori, P. R. Krishanan and S. Thomas, “Preparation and Optical Characterization of Novel Ge-Se-Sb)/PVA Composite Films for Optical Limiting Application,” Journal of Physics D: Applied Physics, Vol. 44, No. 2, 2011, Article ID: 025101. doi:10.1088/0022-3727/44/2/025101
[11] J. C. Phillips, “Topology of Covalent Non-Crystalline Solids I: Short-Range Order in Chalcogenide Alloys,” Journal of Non-Crystalline Solids, Vol. 34, No. 2, 1979, pp. 153-181. doi:10.1016/0022-3093(79)90033-4
[12] M. F. Thorpe, “Continuous Deformation in Random Network,” Journal of Non-Crystalline Solids, Vol. 57, No. 3, 1983, pp. 355-370. doi:10.1016/0022-3093(83)90424-6
[13] M. V. Chubynsky and M. F. Thorpe, “Rigidity Percolation and the Chemical Threshold in Network Glasses,” In: M. A. Popescu, Ed., Physics and Applications of Disordered Materials, INOE Publishing House, Bucharest, 2002, pp. 229-240.
[14] V. Modgil and V.S. Rangra, “The Study of the Theoretical Parameters of Ge Sn Substituted Pb Based Quaternary Chalcogenide Glasses at Their Rigidity Percolation Threshold,” Journal of Optoelectronics and Advanced Materials, Vol. 13, No. 2, 2011, pp. 158-164.
[15] G. G. Naumis, “Energy Landscape and Rigidity,” Physical Review E, Vol. 71, No. 2, 2005, Article ID: 026114, pp. 1-7.
[16] A. George, D. Sushamma and P. Predeep, “Effect of Indium Content on the Optical and Other Physical Characteristics of As-Te Glass System,” Chalcogenide Letters, Vol. 3, No. 4, 2006, pp. 33-39.
[17] L. Zhenhua, “Chemical Bond Approach to the Chalcogenide Glass Forming Tendency,” Journal of Non-Crystalline Solids, Vol. 127, No.3, 1991, pp. 298-305. doi:10.1016/0022-3093(91)90482-L
[18] S. S. Fouad, S. A. Fayek and M. H. Ali, “Physical Evolution and Glass Forming Tendency of Ge1-xSnxSe2.5 Amorphous system,” Vacuum, Vol. 49, No. 1, 1998, pp. 25-30. doi:10.1016/S0042-207X(97)00122-X
[19] Mainka, P. Sharma and N. Thakur, “Effect of Germanium Addition on the Physical Properties of Se-Te Glassy Semiconductors,” Philosophical Magazine, Vol. 89, No. 33, 2009, pp. 3027-3036. doi:10.1080/14786430903166700
[20] O. A. Lafi, M. M. A. Imran and M. K. Abdullah, “Chemical Bond Approach to Glass Transition Temperature and Crystallization Activation Energy in Se90In10-xSnx (2 <= x<= 8) Semiconducting Glasses,” Materials Chemistry and Physics, Vol. 108, No. 1, 2008, pp. 109-114. doi:10.1016/j.matchemphys.2007.09.011
[21] L. Pauling, “The Nature of the Chemical Bond,” Cornell University Press, New York, 1960.
[22] H. Schumm, D. D. Wagman, S. Bailey, W. H. Evans and V. B. Parker, “In National Bureau of Standards (USA) Technical Notes,” 1973, pp. 1-8.
[23] J. D. Cox, D. D. Wagman and V. A. Medvedev, “CODATA Key Values for Thermodynamics,” Hemisphere Publishing Corp., New York, 1989.
[24] J. Bicerano and S. R. Ovshinsky, “Chemical Bond Approach to the Structures of Chalcogenide Glasses with Reversible Switching Properties,” Journal of Non-Crystalline Solids, Vol. 74, No. 1, 1985, pp. 75-84. doi:10.1016/0022-3093(85)90402-8
[25] V. Pamukchieva, A. Szekeres, K. Todorova, M. Fabian, E. Svab, Zs. Revay and L. Szentmiklosi, “Evaluation of Basic Physical Parameters of Quaternary Ge-Sb-(S,Te) Chalcogenide Glasses,” Journal of Non-Crystalline Solids, Vol. 355, No. 50-51 2009, pp. 2485-2490. doi:10.1016/j.jnoncrysol.2009.08.028
[26] L. Tichy and H. Ticha, “On the Chemical Threshold in Chalcogenide Glasses,” Materials Letters, Vol. 21, No. 3-4, 1994, pp. 313-319. doi:10.1016/0167-577X(94)90196-1
[27] L. Tichy and H. Ticha, “Covalent Bond Approach to the Glass Transition Temperature of Chalcogenide Glasses,” Journal of Non-Crystalline Solids, Vol. 189, No. 1-2, 1995, pp. 141-146. doi:10.1016/0022-3093(95)00202-2
[28] M. H. R. Lankhorst, “Modelling Glass Transition Temperatures of Chalcogenide Glasses. Applied to Phase-Change Optical Recording Materials,” Journal of Non-Crystalline Solids, Vol. 297, No. 2-3, 2002, pp. 210-219. doi:10.1016/S0022-3093(01)01034-1

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.