Evaluation of the Optimal Image Reconstruction Interval for Noninvasive Coronary 64-Slice Computed Tomography Venography

Abstract

Objective: We investigated the appropriate reconstruction interval required to generate optimal quality images of the coronary veins and to evaluate the size of each vein at the systolic and diastolic phases using coronary computed tomography (CT) venography. Methods: Coronary CT venograms obtained from 30 patients using 64-slice CT were reconstructed at 0% to 90% of the cardiac cycle in 10% increments. Two radiologists assessed the image quality of the anterior interventricular vein (AIV), the great cardiac vein (GCV), the posterior vein of the left ventricle (PVLV), the posterior interventricular vein (PIV), the coronary sinus (CS) and the small cardiac vein (SCV). We determined the sizes of measurable CS (n = 16) and GCV (n = 12) at the end systolic and mid diastolic phases. Results: The most appropriate reconstruction point for all coronary veins turned out to be at the mid-diastolic phase. The size of the CS and GCV was greater at a 30% than that at a 70% R-R interval (p < 0.01). Conclusions: Image quality was optimal at the mid-diastolic phase for each coronary vein, but the sizes of the coronary veins varied during the cardiac cycle. The cardiac cycle must be considered when measuring the sizes of cardiac veins.

Share and Cite:

Y. Ohta, S. Fujii, S. Kakite, E. Mizuta, M. Hashimoto, T. Kaminou and T. Ogawa, "Evaluation of the Optimal Image Reconstruction Interval for Noninvasive Coronary 64-Slice Computed Tomography Venography," Open Journal of Radiology, Vol. 3 No. 2, 2013, pp. 66-72. doi: 10.4236/ojrad.2013.32010.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. Cazeau, C. Leclercq, T. Lavergne, S. Walker, C. Varma, et al., “Effects of Multisite Biventricular Pacing in Patients with Heart Failure and Intraventricular Conduction Delay,” The New England Journal of Medicine, Vol. 344, No. 12, 2001, pp. 873-880. doi:10.1056/NEJM200103223441202
[2] R. C. Hendel, M. R. Patel, C. M. Kramer, M. Poon, R. C. Hendel, et al., “ACCF/ACR/SCCT/SCMR/ASNC/ NASCI/ SCAI/SIR 2006 Appropriateness Criteria for Cardiac Computed Tomography and Cardiac Magnetic Resonance Imaging: A Report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology,” Journal of the American College of Cardiology, Vol. 48, No. 7, 2006, pp. 1475-1497. doi:10.1016/j.jacc.2006.07.003
[3] C. Weiss, R. Cappato, S. Willems, T. Meinertz and K. H. Kuck, “Prospective Evaluation of the Coronary Sinus Anatomy in Patients Undergoing Electrophysiologic Study,” Clinical Cardiology, Vol. 22, No. 8, 1999, pp. 537-543. doi:10.1002/clc.4960220810
[4] C. A. Thompson, B. A. Nasseri, J. Makower, S. Houser, M. McGarry, et al., “Percutaneous Transvenous Cellular Cardiomyoplasty. A Novel Nonsurgical Approach for Myocardial Cell Transplantation,” Journal of the American College of Cardiology, Vol. 41, No. 11, 2003, pp. 1964-1971. doi:10.1016/S0735-1097(03)00397-8
[5] A. J. Choure, M. J. Garcia, B. Hesse, M. Sevensma, G. Maly, et al., “In Vivo Analysis of the Anatomical Relationship of Coronary Sinus to Mitral Annulus and Left Circumflex Coronary Artery Using Cardiac Multidetector Computed Tomography: Implications for Percutaneous Coronary Sinus Mitral Annuloplasty,” Journal of the American College of Cardiology, Vol. 48, No. 10, 2006, pp. 1938-1945. doi:10.1016/j.jacc.2006.07.043
[6] E. Meisel, D. Pfeiffer, L. Engelmann, J. Tebbenjohanns, B. Schubert, et al., “Investigation of Coronary Venous Anatomy by Retrograde Venography in Patients with Malignant Ventricular Tachycardia,” Circulation, Vol. 104, No. 4, 2001, pp. 442-447. doi:10.1161/hc2901.093145
[7] S. Abbara, R. C. Cury, K. Nieman, V. Reddy, F. Moselewski, et al., “Noninvasive Evaluation of Cardiac Veins with 16-MDCT Angiography,” American Journal of Roentgenology, Vol. 185, No. 4, 2005, pp. 1001-1006. doi:10.2214/AJR.04.1382
[8] M. R. Jongbloed, H. J. Lamb, J. J. Bax, J. D. Schuijf, A. de Roos, et al., “Noninvasive Visualization of the Cardiac Venous System Using Multislice Computed Tomography,” Journal of the American College of Cardiology, Vol. 45, No. 5, 2005, pp. 749-753. doi:10.1016/j.jacc.2004.11.035
[9] J. P. Singh, S. Houser, E. K. Heist and J. N. Ruskin, “The Coronary Venous Anatomy: A Segmental Approach to Aid Cardiac Resynchronization Therapy,” Journal of the American College of Cardiology, Vol. 46, No. 1, 2005, pp. 68-74. doi:10.1016/j.jacc.2005.04.017
[10] L. F. Tops, N. R. Van de Veire, J. D. Schuijf, A. de Roos, E. E. vander Wall, et al., “Noninvasive Evaluation of Coronary Sinus Anatomy and Its Relation to the Mitral Valve Annulus: Implications for Percutaneous Mitral Annuloplasty,” Circulation, Vol. 115, No. 11, 2007, pp. 1426-1432. doi:10.1161/CIRCULATIONAHA.106.677880
[11] H. Tada, K. Kurosaki, S. Naito, K. Koyama, K. Itoi, et al., “Three-Dimensional Visualization of the Coronary Venous System Using Multidetector Row Computed Tomography,” Circulation Journal, Vol. 69, No. 2, 2005, pp. 165-170. doi:10.1253/circj.69.165
[12] R. Mlynarski, M. Sosnowski, A. Wlodyka, K. Chromik, W. Kargul, et al., “Optimal Image Reconstruction Intervals for Noninvasive Visualization of the Cardiac Venous System with a 64-Slice Computed Tomography,” The International Journal of Cardiovascular Imaging, Vol. 25, No. 6, 2009, pp. 635-641. doi:10.1007/s10554-009-9463-0
[13] S. S. Shim, Y. Kim and S. M. Lim, “Improvement of Image Quality with Beta-Blocker Premedication on ECG-Gated 16-MDCT Coronary Angiography,” American Journal of Roentgenology, Vol. 184, No. 2, 2005, pp. 649-654. doi:10.2214/ajr.184.2.01840649
[14] S. Leschka, L. Husmann, L. M. Desbiolles, O. Gaemperli, T. Schepis, et al., “Optimal Image Reconstruction Intervals for Non-Invasive Coronary Angiography with 64 Slice CT,” European Radiology, Vol. 16, No. 9, 2006, pp. 1964-1972. doi:10.1007/s00330-006-0262-x
[15] S. Achenbach, D. Ropers, J. Holle, G. Muschiol, W. G. Daniel, et al., “In-Plane Coronary Arterial Motion Velocity: Measurement with Electron-Beam CT,” Radiology, Vol. 216, No. 2, 2000, pp. 457-463.
[16] B. J. Wintersperger, K. Nikolaou, F. von Ziegler, T. Johnson, C. Rist, et al., “Image Quality, Motion Artifacts, and Reconstruction Timing of 64-Slice Coronary Computed Tomography Angiography with 0.33-Second Rotation Speed,” Investigative Radiology, Vol. 41, No. 5, 2006, pp. 436-442. doi:10.1097/01.rli.0000202639.99949.c6
[17] L. Husmann, S. Leschka, L. Desbiolles, T. Schepis, O. Gaemperli, et al., “Coronary Artery Motion and Cardiac Phases: Dependency on Heart Rate—Implications for CT Image Reconstruction,” Radiology, Vol. 245, No. 2, 2007, pp. 567-576. doi:10.1148/radiol.2451061791
[18] M. Tschabitscher, “Anatomy of Coronay Veins,” Springer Verlag, New York, 1984.
[19] R. Nezafat, Y. Han, D. C. Peters, D. A. Herzka, J. V. Wylie, et al., “Coronary Magnetic Resonance Vein Imaging: Imaging Contrast, Sequence, and Timing,” Magnetic Resonance in Medicine, Vol. 58, No. 6, 2007, pp. 1196-1206. doi:10.1002/mrm.21395
[20] A. J. Einstein, M. J. Henzlova and S. Rajagopalan, “Estimating Risk of Cancer Associated with Radiation Exposure from 64-Slice Computed Tomography Coronary Angiography,” The Journal of the American Medical Association, Vol. 298, No. 3, 2007, pp. 317-323. doi:10.1001/jama.298.3.317
[21] J. Hausleiter, T. Meyer, M. Hadamitzky, E. Huber, M. Zankl, et al., “Radiation Dose Estimates from Cardiac Multislice Computed Tomography in Daily Practice: Impact of Different Scanning Protocols on Effective Dose Estimates,” Circulation, Vol. 113, No. 10, 2006, pp. 1305-1310. doi:10.1161/CIRCULATIONAHA.105.602490
[22] J. P. Earls, E. L. Berman, B. A. Urban, C. A. Curry, J. L. Lane, et al., “Prospectively Gated Transverse Coronary CT Angiography Versus Retrospectively Gated Helical Technique: Improved Image Quality and Reduced Radiation Dose,” Radiology, Vol. 246, No. 3, 2008, pp. 742-753. doi:10.1148/radiol.2463070989

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.