Studies on the Synthesis, Growth and Characterization of ([Paranitrophenyl]Imino)Benzene NLO Crystal by Sankaranarayanan-Ramasamy Method

Abstract

The study of imine-bridged organics has been the hot spot synthesis of second order nonlinear optical (SONLO) and photo-responsive materials in recent years. Herein we present a study of synthesis, growth, and characterization of ([paranitrophenyl]imino)benzene (PNPIB) NLO single crystal. The title compound was synthesized in one step by Schiff base formation. <110> PNPIB single crystal of diameter of 40 mmand length 50 mmwas successfully grown by SR method using a seed as the nucleus. The growth rate formula is derived for the SR method. PNPIB single crystals of 10 mmdiameter and 60 mmheight have been grown at an average growth rate of 3 mmper day from the point seed in a glass crystallizer. Almost 100% stable crystal conversion efficiency was achieved. The as grown PNPIB crystals were characterized using single crystal X-ray diffraction (XRD), X-ray powder diffraction (XRPD), Fourier Transform Infrared (FTIR), Ultraviolet-Visible-Near Infrared (UV-Vis-NIR), 1H & 13C NMR spectral studies, dielectric measurement and NLO studies. Single crystal XRD analysis confirms that the grown ingot belongs to the space group of P2 of monoclinic system thus exhibiting noncentrosymmetric structure. The crystalline perfection was assessed by XRPD. The powder diffraction pattern of the grown crystal has been indexed. The presence of C=N bond with intramolecular hydrogen bonding and the protonation of ions were confirmed by FTIR analysis. The UV-Vis-NIR spectrum of the crystal shows that the crystal has a cut-off at 298 nm. The 1H & 13C NMR spectra confirm the molecular structure. The dielectric behaviour was measured in the frequency range 1 KHz - 10 KHz for the temperature range from 30℃ to 170℃. The slight decrease in dielectric constant has been observed as the frequency is increased and the dielectric loss is very low for the entire frequency range. The second harmonic generation (SHG) in the crystal was observed by Kurtz powder technique.

Share and Cite:

S. Anbarasu, T. Kumar and P. Devarajan, "Studies on the Synthesis, Growth and Characterization of ([Paranitrophenyl]Imino)Benzene NLO Crystal by Sankaranarayanan-Ramasamy Method," Journal of Minerals and Materials Characterization and Engineering, Vol. 1 No. 3, 2013, pp. 110-116. doi: 10.4236/jmmce.2013.13020.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] H. O. Marcy, L. F. Warren, M. S. Webb, C. A Ebbers, S. P. Velsko, G. C. Kennedy and G. C. Catella, “Second-Harmonic Generation in Zinc Tris (Thiourea) Sulfate,” Applied Optics, Vol. 31, No. 24, 1992, pp. 5051-5060. doi:10.1364/AO.31.005051
[2] X. Q. Wang, D. Xu, D. R. Yuan, Y. P. Tian, W. T. Yu, S. Y. Sun, Z. H. Yang, Q. Fang, M. K. Lua, Y. X. Yana, F. Q. Menga, S. Y. Guo, G. H. Zhang and M. H. Jiang, “Synthesis, Structure and Properties of a New Nonlinear Optical Material: Zinc Cadmium Tetrathiocyanate,” Materials Research Bulletin, Vol. 34, No. 12-13, 1999, pp. 2003-2011. doi:10.1016/S0025-5408(99)00211-1
[3] P. A. A. Mary and S. Dhanuskodi, “Growth and Characterization of a New Nonlinear Optical Crystal: Bis Thiourea Zinc Chloride,” Crystal Research and Technology, Vol. 36, No. 11, 2001, pp. 1231-1237. doi:10.1002/1521-4079(200111)36:11<1231::AID-CRAT1231>3.0.CO;2-I
[4] R. Rajasekaran, R. Mohan Kumar, R. Jayavel and P. Ramasamy, “Influence of pH on the Growth and Characteristics of Nonlinear Optical Zinc Thiourea Chloride (ZTC) Single Crystals,” Journal of Crystal Growth, Vol. 252, 2003, pp. 317-327. doi:10.1016/S0022-0248(02)02467-3
[5] R. Rajasekaran, P. M. Ushasree, R. Jayavel and P. Ramasamy, “Growth and Characterization of Zinc Thiourea Chloride (ZTC): A Semiorganic Nonlinear Optical Crystal,” Journal of Crystal Growth, Vol. 229, No. 1-4, 2001, pp. 563-567. doi:10.1016/S0022-0248(01)01229-5
[6] S. A. De Vries, P. Goedtkindt, W. J. Huisman, M. J. Zwanenburg, R. Feidenhansl, S. L. Bennett, D. M. Smilgies, A. Stierle, J. J. De Yoreo, W. J. P. Van Enckevort, P. Bennema and E. Vlieg, “X-Ray Diffraction Studies of Potassium Dihydrogen Phosphate (KDP) Crystal Surfaces,” Journal of Crystal Growth, Vol. 205, No. 1-2, 1999, pp. 202-214. doi:10.1016/S0022-0248(99)00249-3
[7] J. N. Woodford, C. H. Wang and K. Y. Jen Alex, “Dispersion of the First Molecular Hyperpolarizability of Charge-Transfer Chromophores Studied by Hyper-Rayleigh Scattering,” Chemical Physics, Vol. 271, No. 1-2, 2001, pp. 137-143. doi:10.1016/S0301-0104(01)00430-X
[8] O. P. Singh, Y. P. Singh, N. Singh and N. B. Singh, “Growth of Vanillin Crystals for Second Harmonic Generation (SHG) Applications in the Near-IR Wavelength Region,” Journal of Crystal Growth, Vol. 225, No. 2-4, 2001, pp. 470-473. doi:10.1016/S0022-0248(01)00918-6
[9] J. D. Bierlein, L. K. Cheng, Y. Wang and W. Tam, “Linear and Nonlinear Optical Properties of 3-Methyl-4- Methoxy-4’-Nitrostilbene Single Crystals,” Applied Physics Letters, Vol. 56, No. 5, 1990, pp. 423-425. doi:10.1063/1.102777
[10] G. S. Buhra, P. A. Chaloner, L. M. Dutta, W. Healy and P. B. Hitchcock, “Crystal Growth and Hydration Effects in Morpholinium 4-Hydroxybenzoate (M4HB),” Journal of Crystal Growth, Vol. 225, No. 2-4, 2001, pp. 474-478. doi:10.1016/S0022-0248(01)00937-X
[11] Z. D. Li, B. C. Wu and G. B. Su, “Nonlinear-Optical, Optical, and Crystallographic Properties of Methyl p-Hydroxybenzoate,” Journal of Crystal Growth, Vol. 178, No. 4, 1997, pp. 539-544. doi:10.1016/S0022-0248(97)00014-6
[12] A. A. Ballman, R. L. Byer, D. Eimerl, R. S. Feigelson, B. J. Feldman, L. S. Goldberg, N. Menyuk and C. L. Tang, “V. Inorganic Nonlinear Materials for Frequency Conver- sion,” Applied Optics, Vol. 26, No. 2, 1987, pp. 224-227. doi:10.1364/AO.26.000224
[13] H. ünver, A. Karakas and A. Elmali, “Nonlinear Optical Properties, Spectroscopic Studies and Structure of 2-Hydro- xy-3-Methoxy-N-(2-Chloro-Benzyl)-Benzaldehyde-Imine,” Journal of Molecular Structure, Vol. 702, No. 1-3, 2004, pp. 49-54. doi:10.1016/j.molstruc.2004.06.008
[14] A. Karakas and H. ünver, “Third-Order Nonlinear Optical Properties and Structures of (E)-N-(4-Nitrobenzylidene)-2, 6-Dimethylaniline and (E)-N-(4-Nitrobenzylidene)-2,3-Dimethylaniline,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 75, No. 5, 2010, pp. 1492-1496. doi:10.1016/j.saa.2010.02.004
[15] Y. X. Sun, Q. L. Hao, W. X. Wei, Z. X. Yu, L. D. Lu, X. Wang and Y. S. Wang, Journal of Molecular Structure, Vol. 929, 2009, p. 10.
[16] Y. Sun, Q. Hao, W. Wei, L. Lu and X. Wang, “Experimental and Density Functional Studies on 4-(4-Cyanobenzylideneamino)Antipyrine,” Molecular Physics, Vol. 107, No. 3, 2009, p. 223.
doi:10.1080/00268970902769471
[17] Y. X. Sun, Q. L. Hao, W. X. Wen, X. Wei, Z. X. Yu, L. D. Lu, X. Wang and Y. S. Wang, Journal of Molecular Structure, Vol. 929, 2009, p. 10.
[18] Y. S. Sun, W. X. Wei, Q. L. Hao, L. D. Lu and X. Wang, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 73, 2009, p. 772.
[19] H. Ünver, A. Karakas, A. Elmali, T. N. Durlu, Journal of Molecular Structure, Vol. 737, 2005, p. 131.
[20] H. ünver and T. N. Durlu, Journal of Molecular Structure, Vol. 655, 2003, p. 369.
[21] V. N. Volodymr, Y. A. Mikhail, N. N. Vladimir, E. M. Craig, H. C. Beatriz and V. T. Tatiana, “Thermally Stable Heterocyclic Imines as New Potential Nonlinear Optical Materials,” Journal of Physical Chemistry B, Vol. 108, No. 25, 2004, pp. 8531-8539. doi:10.1021/jp0367528
[22] V. N. Volodymr, Y. A. Mikhail, N. N. Vladimir, G. P. Benjamin, O. F. Donald and V. T. Tatiana, “Thermally Stable Imines as New Potential Nonlinear Optical Materials,” Crystal Growth & Design, Vol. 4, No. 3, 2004, pp. 521-531. doi:10.1021/cg034068c
[23] M. J. Heravic, A. A. Khandar and I. A. Sheikshoaie, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 55, 1999, p. 2537.
[24] I. I. Oleinik, V. E. Romanov, I. V. Oleinik and S. S. Ivanchev, Journal of Organic Chemistry, Vol. 44, 2008, p. 107.
[25] M. Y. Malinkaya, N. I. Ivancheva, I. I. Olenik, G. H. Tolstikov and S. S. Ivanchev, “Catalytic Activity of Systems Based on Titanium Bis(Phenoxy Imine) Complexes: Effect of the Ligand Structure,” Russian Journal of Applied Chemistry, Vol. 80, No. 9, 2007, pp. 1515-1522. doi:10.1134/S1070427207090145
[26] A. Plagvet, M. Guillaume, B. Champagne, L. Rougier, F. Mancois, V. Rodriguez, J. L. Pozzo, L. Ducasse and F. Castet, “Investigation on the Second-Order Nonlinear Optical Responses in the Keto-Enol Equilibrium of Anil Derivatives,” Journal of Physical Chemistry C, Vol. 112, No. 14, 2008, pp. 5638-5645. doi:10.1021/jp711511t
[27] N. R. Sperandeo, A. Karlsson, S. Cuffini, S. Pagola and P. W. Stephens, “The Crystal Structure and Physicochemical Characteristics of 2-Hydroxy-N-[3(5)-Pyrazolyl]-1,4-Na- phthoquinone-4-Imine, a New Antitrypanosomal Compound,” AAPS PharmSciTech, Vol. 6, No. 4, 2005, pp. E655-E663.
doi:10.1208/pt060482
[28] N. I. Golovina, G. N. Nechiporvenko, I. N. Zyuzin, D. B. Lempert, G. G. Nemtsev, G. V. Shilov, A. N. Utenysnev and K. V. Bozhenko, “Several Aspects of Intermolecular Interactions between the Carbonyl and Imine Groups in the Crystals of Compounds Containing Six-Membered Heterocycles,” Journal of Structural Chemistry, Vol. 49, No. 5, 2008, pp. 909-916. doi:10.1007/s10947-008-0156-7
[29] T. Kishore Kumar, S. Janarthanan, S. Pandi, S. Selvakumar and D. Prem Anand, “Spectral, Dielectric, and Thermal Properties of Triketohydrindane Hydrate Single Crystals,” Crystal Growth & Design, Vol. 9, No. 5, 2009, pp. 2061-2064. doi:10.1021/cg701111e
[30] T. Kishore Kumar, S. Pandi, M. V. A. Raj, C. Maria Magdalene and D. Prem Anand, “Growth, Spectral, and Thermal Properties of Organic Nonlinear Optical Active Morpholin-4-ium-Hydroxybenzoate Single Crystal,” Materials and Manufacturing Processes, Vol. 25, No. 9, 2010, p. 978.
doi:10.1080/10426914.2010.481001
[31] T. Kishore Kumar, D. Prem Anand, S. Selvakumar, S. Pandi and M. Nizam Mohideen, Acta Crystallographica. Section E, Structure Reports Online, Vol. 68, 2012, p. 299.
[32] K. Sankaranarayanan and P. Ramasamy, Journal of Crystal Growth, Vol. 280, 2005, p. 467.
[33] K. Hisatake, S. Tankas and A. Yovko, “Evaporation Rate of Water in a Vessel,” Journal of Applied Physics, Vol. 73, No. 11, 1993, p. 7395. doi:10.1063/1.354031
[34] D. L. Pavia, G. M. Lampman, G. S. Kriz, J. A. Vyvyan, “Introduction to Spectroscopy,” 4th Edition, Brookescole Publishers, California, 2008.
[35] J. Kulakowska and S. Kucharski, European Polymer Journal, Vol. 36, 2000, p. 1805.
[36] Y. F. Zhou, Materials Science and Engineering: B, Vol. 99, 2003, p. 593.
[37] I. D. L. Albert, T. J. Marks and M. A. Ratner, “Large Molecular Hyperpolarizabilities in ‘Push-Pull’ Porphyrins. Molecular Planarity and Auxiliary Donor-Acceptor Effects,” Chemistry of Materials, Vol. 10, No. 3, 1998, pp. 753-762. doi:10.1021/cm970478a
[38] U. Von Hundelshausen, Physics Letters A, Vol. 34, 1971, p. 405.
[39] C. Balarew and R. Duhlew, Journal of Solid State Chemistry, Vol. 55, 1984, p. 1.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.