Resistance Measured by Airflow Perturbation Compared with Standard Pulmonary Function Measures

Abstract

Background: Routine lung function testing requires expensive equipment, or requires maximum expiratory effort. The airflow perturbation device (APD) is a light handheld device, allowing for serial measures of respiratory resistance noninvasively and effortlessly. Methods: In a convenience sample of 398 patients undergoing pulmonary function testing, we compared routine spirometric indices (forced expired volume in 1 second (FEV1), peak expiratory flow (PEF)), and airways resistance (Raw-272 patients), to measures of respiratory resistance measured with the APD including inspiratory (IR), expiratory (ER) and averaged (AR) resistance. Results: Measures of lung function were significantly correlated (p < 0.001). On regression analysis, between 7% - 17% of the variance (R2) for FEV1, PEF, and Raw was explained by APD measurements. Approximately 2/3 of the variance in FEV1 was explained by PEF measurements. Conclusions: APD measurements of lung function correlate with conventional measures. Future studies should be directed at exploring the use of the APD device in serial measures of lung function in patients with lung disease.

Share and Cite:

Haque, T. , Vossoughi, J. , Johnson, A. , Bell-Farrell, W. , Fitzgerald, T. and Scharf, S. (2013) Resistance Measured by Airflow Perturbation Compared with Standard Pulmonary Function Measures. Open Journal of Respiratory Diseases, 3, 63-67. doi: 10.4236/ojrd.2013.32010.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. M. Dubois, S. Y. Botelho and J. H. Comroe Jr., “A New Method for Measuring Airway Resistance in Man Using a Body Plethysmograph: Values in Normal Subjects and in Patients with Respiratory Disease,” Journal of Clinical Investigation, Vol. 35, No. 3, 1956, pp. 327-335. doi:10.1172/JCI103282
[2] K. Von Neergard and K. Wirz, “Die Messimg. Der Stromungwiderstande in den Atemwegen des Menschen Insbespondere bie Asthma und Emphysema,” Zeitschrift fur Klinische Medizine, Vol. 105, 1927, pp. 51-82.
[3] A. M. DuBois, A. W. Brody, D. H. Lewis and B. F. Burgess, “Oscillation Mechanics of Lungs and Chest in Man,” Journal of Applied Physiology, Vol. 8, No. 6, 1956, pp. 587-594.
[4] H. J. Smith, P. Reinhold and M. D. Goldman, “Forced Oscillation Technique and Impulse Oscillometry,” European Respiratory Journal, Vol. 31, 2005, pp. 72-105.
[5] A. T. Johnson, C.-S. Lin and J. N. Hochheimer, “Airflow Perturbation Device for Measuring Airway Resistance of Humans and Animals,” IEEE Transactions on Biomedical Engineering, Vol. 31, No. 9, 1984, pp. 622-626. doi:10.1109/TBME.1984.325306
[6] C. G. Lausted and A. T. Johnson, “Airflow Perturbation Device for Measureing Human Respiratory Resistance,” Proceedings of the IEEE 24th Annual Northeast Conference, 9-10 April 1998, pp. 97-99.
[7] A. T. Johnson and M. S. Sahota, “Validation of Airflow Perturbation Device Resistance Measurements in Excised Sheep Lungs,” Physiological Measurement, Vol. 25, No. 5, 2004, pp. 679-690. doi:10.1088/0967-3334/25/3/008
[8] D. C. Coursey, S. M. Scharf and A. T. Johnson, “Comparing Pulmonary Resistance Measured with an Esophageal Balloon to Resistance and Measurements with an Airflow Perturbation Device,” Physiological Measurement, Vol. 31, No. 7, 2010, pp. 921-934. doi:10.1088/0967-3334/31/7/004
[9] D. C. Coursey, S. M. Scharf and A. T. Johnson, “Comparison of the Expiratory Isovolume Pressure Flow Relationship Generated with Stop-Flow and Esophageal Balloon Methods,” Respiratory Care, Vol. 56, No. 7, 2011, pp. 969-975. doi:10.4187/respcare.01037
[10] N. K. Silverman, A. T. Johnson, W. H. Scott and F. C. Koh, “Exercise-Induced Respiratory Resistance Changes as Measured with the Airflow Perturbation Device,” Physiological Measurement, Vol. 26, No. 1, 2005, pp. 29-38. doi:10.1088/0967-3334/26/1/003
[11] M. R. Miller, J. Hankinson, V. Brusasco, F. Burgos, R. Casaburi, A. Coates, R. Crapo, P. Enright, C. P. M. van der Grinten, P. Gustafsson, R. Jensen, D. C. Johnson, N. MacIntyre, R. McKay, D. Navajas, O. F. Pedersen, R. Pellegrino, G. Viegi and J. Wanger, “Standardisation of Lung Function Testing: Standardisation of Spirometry,” European Respiratory Journal, Vol. 26, No. 2, 2005, pp. 319-338. doi:10.1183/09031936.05.00034805
[12] J. Wanger, J. L. Clausen, A. Coates, O. F. Pedersen, V. Brusasco, F. Burgos, R. Casaburi, R. Crapo, P. Enright, C. P. M. van der Grinten, P. Gustafsson, J. Hankinson, R. Jensen, D. Johnson, N. MacIntyre, R. McKay, M. R. Miller, D. Navajas, R. Pellegrino and G. Viegi, “Standardisation of the Measurement of Lung Volumes,” European Respiratory Journal, Vol. 26, No. 3, 2005, pp. 511-522. doi:10.1183/09031936.05.00035005
[13] J. F. Morris, A. Koski and L. C. Johnson, “Spirometric Standards for Healthy Non-Smoking Adults,” American Review of Respiratory Disease, Vol. 103, 1971, pp. 57-67.
[14] R. O. Crapo, A. H. Morris, P. D. Clayton and C. R. Nixon, “Lung Volumes in Healthy Nonsmoking Adults,” Bulletin Européen de Physiopathologie Respiratoire, Vol. 18, No. 3, 1982, pp. 419-425.
[15] A. T. Johnson, S. C. Jones, J. J. Pan and J. Vosoughi, “Variation of Respiratory Resistance Suggests Optimization of Airway Caliber,” IEEE Transactions on Biomedical Engineering, Vol. 59, No. 8, 2012, pp. 2355-2361. doi:10.1109/TBME.2012.2204055

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.