Carbon Dioxide Emissions from the Tropical Dowleiswaram Reservoir on the Godavari River, Southeast of India

Abstract

Time-series observations were conducted in the Dowleiswaram dam reservoir that was constructed on the largest monsoonal river in India to understand the source of inorganic carbon, and fluxes to the atmosphere. The reservoir stores water during dry period of six months and water increases during the period when Indian subcontinent receives significant rainfall. Significant modification of organic matter was noticed during storage period indicated by decrease in pH from 7.5 to 6.4 and oxygen saturation from ~95% to 65%. The relationship of dissolved inorganic carbon (DIC) with oxygen saturation, dissolved organic carbon (DOC) and isotopic ratios of DIC suggests that heterotrophic activities are the major source of inorganic carbon to the reservoir. In addition to this, ground water exchange also contributes significantly to the inorganic carbon pool in the reservoir. Nutrients released due to decomposition of organic matter in the reservoir supports both autotrophic and heterotrophic activities. The pCO2 levels in the reservoir varied between 3944 and 16,042 μatm and higher pCO2 levels were noticed during peak discharge period. The annual mean CO2 fluxes from the reservoir amounted to 112 ± 126 mmolC m-2·d-1 and ~6 times higher fluxes were noticed during discharge period compared to dry period and such high fluxes during discharge period were contributed by both high pCO2 levels and winds. It was further noticed that dam reservoir is a strong source of pCO2 to the estuary wherein <1000 μatm of pCO2 during dry period and >15,000 μatm during discharge period were observed. Our study also indicates that Dowleiswaram dam reservoir is a strong source of CO2 to atmosphere, even though it is much smaller than Brazilian (tropical) reservoir but higher than European reservoirs.

Share and Cite:

M. Prasad, V. Sarma, V. Sarma, M. Krishna and N. Reddy, "Carbon Dioxide Emissions from the Tropical Dowleiswaram Reservoir on the Godavari River, Southeast of India," Journal of Water Resource and Protection, Vol. 5 No. 5, 2013, pp. 534-545. doi: 10.4236/jwarp.2013.55054.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J. A. Downing, J. J. Cole, J. J. Middelburg, R. G. Striegl, C. M. Duarte, P. Kortelainen, Y. T. Prairie and K. A. Laube, “Sediment Organic Carbon Burial in Agriculturally Eutrophic Impoundments over the Last Century,” Global Biogeochemical Cycles, Vol. 22, No. 1, 2008, pp. 1-10. doi:10.1029/2006GB002854
[2] L. J. Tranvik, J. A. Downing, J. B. Cotner, S. A. Loiselle, R. G. Striegl, T. J. Ballatore, P. Dillon, K. Finlay, K. Fortino and L.B. Knoll, “Lakes and Reservoirs as Regulators of Carbon Cycling and Climate,” Limnology and Oceanography, Vol. 54, No. 6, 2009, pp. 2298-2314. doi:10.4319/lo.2009.54.6_part_2.2298
[3] J. W. M. Rudd, R. Harris, C. A. Kelly and R. E. Hecky, “Are Hydroelectric Reservoirs Significant Sources of Greenhouse Gases?” AMBIO: A Journal of the Human Environment, Vol. 22, No. 4, 1993, pp. 246-248.
[4] C. A. Kelly, J. Rudd, R. Bodaly, N. Roulet, V. L. S. Louis, A. Heyes, T. Moore, S. Schiff, R. Aravena and K. Scott, “Increases in Fluxes of Greenhouse Gases and methyl Mercury Following Flooding of an Experimental Reservoir,” Environmental Science & Technology, Vol. 31, No. 5, 1997, pp. 1334-1344. doi:10.1021/es9604931
[5] G. Abril, F. Guérin, S. Richard, R. Delmas, C. Galy-Lacaux, P.Gosse, A. Tremblay, L. Varfalvy, M. A. Dos Santos and B. Matvienko, “Carbon Dioxide and Methane Emissions and the Carbon Budget of a 10-Year Old Tropical Reservoir (Petit Saut, French Guiana),” Global Biogeochemical Cycles, Vol. 19, No. 4, 2005, p. 16. doi:10.1029/2005GB002457
[6] F. Roland, L. O. Vidal, F. S. Pacheco, N. O. Barros, A. Assireu, J. P. H. B. Ometto, A. C. P. Cimbleris and J. J. Cole, “Variability of Carbon Dioxide Flux from Tropical (Cerrado) Hydroelectric Reservoirs,” Aquatic Sciences Research Across Boundaries, Vol. 72, No. 3, 2010, pp. 283-293. doi:10.1007/s00027-010-0140-0
[7] J. J. Cole, N. F. Caraco, G. W. Kling and T. K. Kratz, “Carbon Dioxide Supersaturation in the Surface Waters of Lakes,” Science, Vol. 265, No. 5178, 1994, pp. 1568-1568. doi:10.1126/science.265.5178.1568
[8] F. Guerin, G. Abril, S. Richard, B. Burban, C. Reynouard, P. Seyler and R. Delmas, “Methane and Carbon Dioxide Emissions from Tropical Reservoirs: Significance of Downstream Rivers,” Geophysical Research Letters, Vol. 33, No. 21, 2006, p. 6. doi:10.1029/2006GL027929
[9] W. Graneli, M. Lindell and L. Tranvik, “Photo-Oxidative Production of Dissolved Inorganic Carbon in Lakes of Different Humic Content,” Limnology and Oceanography, Vol. 41, No. 4, 1996, pp. 698-706. doi:10.4319/lo.1996.41.4.0698
[10] E. G. Stets, R. G. Striegl, G. R. Aiken, D. O. Rosenberry and T. C. Winter, “Hydrologic Support of Carbon Dioxide Flux Revealed by Whole-Lake Carbon Budgets,” Journal of Geophysical Research, Vol. 114, No. G1, 2009, p. 14. doi:10.1029/2008JG000783
[11] J. J. Cole, Y. T. Prairie, N. F. Caraco, W. H. McDowell, L. J. Tranvik, R. G. Striegl, C. M. Duarte, P. Kortelainen, J. A. Downing, J. J. Middelburg and J. Melack, “Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget,” Ecosystems, Vol. 10, No. 1, 2007, pp. 171-184. doi:10.1007/s10021-006-9013-8
[12] C. M. Duarte and Y. T. Prairie, “Prevalence of Heterotrophy and Atmospheric CO2 Emissions from Aquatic Ecosystems,” Ecosystems, Vol. 8, No. 7, 2005, pp. 862-870. doi:10.1007/s10021-005-0177-4
[13] P. A. Del Giorgio, J. J. Cole and A. Cimbleris, “Respiration Rates in Bacteria Exceed Phytoplankton Production in Unproductive Aquatic Systems,” Nature, Vol. 385, No. 6612, 1997, pp. 148-151. doi:10.1038/385148a0
[14] S. Sobek, L. J. Tranvik and J. J. Cole, “Temperature In-Dependence of Carbon Dioxide Supersaturation in Global Lakes,” Global Biogeochemical Cycles, Vol. 19, No. 2, 2005, p. 10. doi:10.1029/2004GB002264
[15] B. T. Hart, W. Van Dok and N. Djuangsih, “Nutrient Budget for Saguling Reservoir, West Java, Indonesia,” Water Research, Vol. 36, No. 8, 2002, pp. 2152-2160. doi:10.1016/S0043-1354(01)00428-6
[16] F. J. Rueda, W. E. Fleenor and I. de Vicente, “Pathways of River Nutrients towards the Euphotic Zone in a Deep-Reservoir of Small Size: Uncertainty Analysis,” Ecological Modeling, Vol. 202, No. 3, 2007, pp. 345-361.
[17] V. Karad?ic, G. Subakov-Simic, J. Krizmanic, D. Natic, “Phytoplankton and Eutrophication Development in the Water Supply Reservoirs Garasi and Bukulja (Serbia),” Desalination, Vol. 255, No. 1, 2010, pp. 91-96. doi:10.1016/j.desal.2010.01.009
[18] M. C. A. Calijuri, “Estrutura Fitoplanct?nica em um Reservatorio Tropical (Barra Bonita, SP),” Tese (Doutorado de Livre-Docencia), Universidade de Sao Paulo, Sao Carlos, 1999.
[19] E. C. Rivera, J. Ferraz de Queiroz, J. M. Ferraz and E. Ortega, “Systems Models to Evaluate Eutrophication in the Broa Reservoir, Sao Carlos, Brazil,” Ecological Modeling, Vol. 202, No. 3-4, 2007, pp. 518-526.
[20] K. Kotut, S. G. Njuguna, F. M. Muthuri and L. Krienitz, “The Physico-Chemical Conditions of Turkwel Gorge Reservoir, a New Man Made Lake in Northern Kenya,” Limnologica-Ecology and Management of Inland Waters, Vol. 29, No. 4, 1999, pp. 377-392. doi:10.1016/S0075-9511(99)80046-2
[21] M. K. Mustapha, “Assessment of the Water Quality of Oyun Reservoir, Offa, Nigeria, Using Selected Physico-Chemical Parameters,” Turkish Journal of Fisheries and Aquatic Sciences, Vol. 8, 2008, pp. 309-319.
[22] R. G. Perkins and R. J. C. Underwood, “Gradients of Chlorophyll a and Water Chemistry along an Eutrophic Reservoir with Determination of the Limiting Nutrient by in Situ Nutrient Addition,” Water Research, Vol. 34, No. 3, 2000, pp. 713-724. doi:10.1016/S0043-1354(99)00228-6
[23] Y. Jiang and Z. Ma, “An Evaluation of Water Quality from Locations of Huangyang Reservoir,” Procedia Environmental Sciences, Vol. 12, 2012, pp. 280-284. doi:10.1016/j.proenv.2012.01.278
[24] E. Szarek-Gwiazda and G. Mazurkiewicz-Boroń, “A Comparison between the Water Quality of the Main Tributaries to Three Submontane Dam Reservoirs and the Sediment Quality in Those Reservoirs,” Oceanological and Hydrobiological Studies, Vol. 39, No. 3, 2010, pp. 55-63.
[25] D. Uhlmann, M. Hupfer and C. Appelt, “Discrepancies between Sediment Composition and Tropic Character of Reservoirs,” Verhandlungen des Internationalen Verein Limnologie, Vol. 25, 1994, pp. 181-182.
[26] W. Scharf, “Restoration of the Highly Eutrophic Lingese Reservoir,” Hydrobiologia, Vol. 416, 1999, pp. 85-96. doi:10.1023/A:1003851102095
[27] G. Mazurkiewicz-Boroń, “Factors of Eutrophication Processes in Sub-Mountain Dam Reservoirs,” Supplementa ad Acta Hydrobiologica, Vol. 2, 2002, pp. 1-68.
[28] U. Jayabhaye, “Studies on Physico-Chemical Parameters of Parola Dam in Hingoli District-Maharashtra,” Shodh, Samiksha aur Mulyankan International Research Journal, Vol. 2, 2009, pp. 44-46.
[29] R. M. Mullar, M. Rajashekhar, K. Vijaykumar and N. S. Haliked, “Seasonal Variation in Physico-Chemical Parameters of Hirahalla reservoir, Koppal District, Karnataka,” International Journal of Systems Biology, Vol. 2, No. 2, 2010, pp. 16-20.
[30] A. K. Agarwal and G. S. Rajwar, “Physico-Chemical and Microbiological Study of Tehri Dam Reservoir, Garhwal Himalaya, India,” Journal of American Science, Vol. 6, No. 6, 2010, pp. 65-71.
[31] G. R. Namdev, A. Bajpai and S. Malik, “Assessment of Chemical Fertilizers on the Quality of Water at Hathaikheda Reservoir in Bhopal (M.P.),” International Journal of Pharma and Bio Sciences, Vol. 2, No. 3, 2011, pp. 264-268.
[32] V. V. S. S. Sarma, V. R. Prasad, B. S. K. Kumar, K. Rajeev, B. M. M. Devi, N. P. C. Reddy, V. V. Sarma and M. D. Kumar, “Intra-Annual Variability in Nutrients in the Godavari Estuary, India,” Continental Shelf Research, Vol. 30, No. 19, 2010, pp. 2005-2014. doi:10.1016/j.csr.2010.10.001
[33] V. V. S. S. Sarma, N. A. Kumar, V. R. Prasad, V. Venkataramana, S. Appalanaidu, B. Sridevi, B. S. K. Kumar, M. D. Bharati, C. V. Subbaiah, T. Acharyya, G. D. Rao, R. Viswanadham, L. Gawade, D. T. Manjary, P. P. Kumar, K. Rajeev, N. P. C. Reddy, V. V. Sarma, M. D. Kumar, Y. Sadhuram and T. V. R. Murty, “High CO2 Emissions from the Tropical Godavari Estuary (India) Associated with Monsoon River Discharges,” Geophysical Research Letters, Vol. 38, No. 8, 2011, p. 4. doi:10.1029/2011GL046928
[34] V. V. S. S. Sarma, S. N. M. Gupta, P. V. R. Babu, T. Acharya, N. Harikrishnachari, K. Vishnuvardhan, N. S. Rao, N. P. C. Reddy, V. V. Sarma, Y. Sadhuram, T. V. R. Murty and M. D. Kumar, “Influence of River Discharge on Plankton Metabolic Rates in the Tropical Monsoon Driven Godavari Estuary, India,” Estuarine, Coastal and Shelf Science, Vol. 85, No. 4, 2009, pp. 515-524. doi:10.1016/j.ecss.2009.09.003
[35] V. V. S. S. Sarma, R. Viswanadham, G. D. Rao, V. R. Prasad, B. S. K. Kumar, S. A. Naidu, N. A. Kumar, D. B. Rao, T. Sridevi, M. S. Krishna, N. P. C. Reddy, Y. Sadhuram and T. V. R. Murty, “Carbon Dioxide Emissions from Indian Monsoonal Estuaries,” Geophysical Research Letters, Vol. 39, No. 3, 2012, pp. 1-5. doi:10.1029/2011GL050709
[36] T. Acharyya, V. V. S. S. Sarma, B. Sridevi, V. Venkataramana, M. D. Bharathi, S. A. Naidu, B. S. K. Kumar, V. R. Prasad, D. Bandyopadhyay, N. P. C. Reddy and M. D. Kumar, “Reduced River Discharge Intensifies Phytoplankton Bloom in Godavari Estuary, India,” Marine Chemistry, Vol. 132-133, 2012, pp. 15-22. doi:10.1016/j.marchem.2012.01.005
[37] D. E. Carritt and J. H. Carpenter, “Comparison and Evaluation of Currently Employed Modifications of the Winkler Method for Determining Dissolved Oxygen in Seawater; a NASCO Report,” Journal of Marine Research, Vol. 24, 1966, pp. 286-318.
[38] K. Grasshoff, M. Ehrhardt, K. Kremling and T. Almgren, “Methods of Seawater Analysis,” Wiley Online Library, 1983.
[39] R. Suzuki and T. Ishimaru, “An Improved Method for the Determination of Phytoplankton Chlorophyll Using N, N-Dimethylformamide,” Journal of Oceanography, Vol. 46, No. 4, 1990, pp. 190-194.
[40] A. G. Dickson and C. Goyet, “Hand Book of Methods for the Analysis of the Various Parameters of the Carbon Dioxide System in Seawater,” Version 2, DOE, 1994.
[41] F. J. Millero, T. B. Graham, F. Huang, H. Bustos-Serrano and D. Pierrot, “Dissociation Constants of Carbonic Acid in Seawater as a Function of Salinity and Temperature,” Marine Chemistry, Vol. 100, No. 1-2, 2006, pp. 80-94. doi:10.1016/j.marchem.2005.12.001
[42] P. R. P. Medeiros, B. A. Knoppers, G. H. Cavalcante and W. F. Landim de Souza, “Changes in Nutrient Loads (N, P and Si) in the Sao Francisco Estuary after the Construction of Dams,” Brazilian Archives of Biology and Technology, Vol. 54, No. 2, 2011, pp. 387-397.
[43] S. R. Carpenter, J. J. Cole, J. F. Kitchell and M. L. Pace, “Impact of Dissolved Organic Carbon, Phosphorus, and Grazing on Phytoplankton Biomass and Production in Experimental Lakes,” Association for the Sciences of Limnology and Oceanography, Vol. 43, No. 1, 1998, pp. 73-80. doi:10.4319/lo.1998.43.1.0073
[44] R. Carignan, D. Planas and C. Vis, “Planktonic Production and Respiration in Oligotropic Shield Lakes,” Association for the Sciences of Limnology and Oceanography, Vol. 45, No. 1, 2000, pp. 189-199. doi:10.4319/lo.2000.45.1.0189
[45] A. Bode and E. Fernandez, “Influence of Water-Column Stability on Phytoplankton Size and Biomass Succession Patterns in the Central Cantabrian Sea (Bay of Biscay),” Journal of Plankton Research, Vol. 14, No. 6, 1992, pp. 885-902. doi:10.1093/plankt/14.6.885
[46] R. Rengarajan and V. V. S. S. Sarma, “Submarine Groundwater Discharge and Nutrients Addition to the Coastal Zone of the Godavari Estuary,” Marine Chemistry, 2012, in press.
[47] T. Atici and O. Obali, “Seasonal Variation of Phytoplankton and Value of Chlorophylla in the Sariyar Dam Reservoir (Ankara, Turkey),” Turkish Journal of Botany, Vol. 30, 2006, pp. 349-357.
[48] A. W. S. Guarino, C. W. C. Branco, G. P. Dinizi and R. Rocha, “Limnological Characteristis of an Old Tropical Reservoir (Ribeirao das Lajes Reservoir, RJ, Brazil),” Acta Limnologica Brasiliensia, Vol. 17, No. 2, 2005, pp. 129-141.
[49] R. F. Arenz Jr., W. M. Lewis Jr. and J. F. Saunders, “Determination of Chlorophyll and Dissolved Organic Carbon from Reflectance Data for Colorado Reservoirs,” International Journal of Remote Sensing, Vol. 17, No. 8, 1996, pp. 1547-1566. doi:10.1080/01431169608948723
[50] H. Mash, P. K. Westerhoff, L. A. Baker, R. A. Nieman and M. L. Nguyen, “Dissolved Organic Matter in Arizona Reservoirs: Assessment of Carbonaceous Sources,” Organic Geochemistry, Vol. 35, No. 7, 2004, pp. 831-843. doi:10.1016/j.orggeochem.2004.03.002
[51] G. Abril, S. Richard and F. Guérin, “In Situ Measurements of Dissolved Gases CO2 and CH4 in a Wide Range of Concentrations in a Tropical Reservoir Using an Equilibrator,” Science of the Total Environment, Vol. 354, No. 2-3, 2006, pp. 246-251. doi:10.1016/j.scitotenv.2004.12.051
[52] A. C. Pierson-Wickmann, G. Gruau, E. Jardé, N. Gaury, L. Brient, M. Lengronne, A. Crocq, D. Helle and T. Lambert, “Development of a Combined Isotopic and Mass-Balance Approach to Determine Dissolved Organic Carbon Sources in Eutrophic Reservoirs,” Chemosphere, Vol. 83, No. 3, 2011, pp. 356-366. doi:10.1016/j.chemosphere.2010.12.014
[53] B. Bellanger, S. Huona, P. Steinmann, F. Chabaux, F. Velasquez, V. Valles, K. Arn, N. Clauer and A. Mariotti, “Oxic-Anoxic Conditions in the Water Column of a Tropical Freshwater Reservoir (Pe?a-Large dam, NW Venezuela),” Applied Geochemistry, Vol. 19, No. 8, 2004, pp.1295-1314. doi:10.1016/j.apgeochem.2003.11.007
[54] R. Dondajewska, “Effect of Restoration of a Lowland Dam Reservoir on River Water Quality,” Limnological Review, Vol. 7, No. 4, 2003, pp. 185-190.
[55] J. Y. Lee, Y. K. Choi, H. S. Kim and S. T. Yun, “Hydrologic Characteristics of a Large Rockfill Dam: Implications for Water Leakage,” Engineering Geology, Vol. 80, No. 1-2, 2005, pp. 43-59. doi:10.1016/j.enggeo.2005.03.002
[56] S. Wang, R. M. Dong, C. Z. Dong, L. Huang, H. Jiang and H. Dong, “Diversity of Microbial Plankton across the Three Gorges Dam of the Yangtze River, China,” Geoscience Frontiers, Vol. 3, No. 3, 2012, pp. 335-349. doi:10.1016/j.gsf.2011.11.013
[57] C. Ariyadej, T. Pimpan and T. Reungchai, “Varition of Phytoplankton Biomass as Chlorophyll a in Banglang Reservoir, Yala Province,” Songklanakarin Journal of Science and Technology, Vol. 30, No. 2, 2008, pp. 159-166.
[58] P. K. Verma and J. D. Munshi, “Limnology of Badua Reservoir of Bhagalpur, Bihar,” Proceedings of the Indian National Science Academy, Vol. 6, 1983, pp. 598-609.
[59] P. N. Kamble, S. J. Kokate, H. R. Aher and S. R. Kuchekar, “Seasonal Variation in Physico-Chemical Parameters of Khadakwasala Reservoir,” Rasayan Journal of Chemistry, Vol. 1, No. 1, 2008, pp. 63-67.
[60] E. Jekatierynczuk-Rudczyk, A. Gorniak, P. Zielinski, J. Dziemian, “Daily Dynamics of Water Chemistry in a Lowland Polyhumic Dam Reservoir,” Polish Journal of Environmental Studies, Vol. 11, No. 5, 2002, pp. 521-526.
[61] H. Zeng, L. Song, Z. Yu and H. Chen, “Distribution of Phytoplankton in the Three-Gorge Reservoir during Rainy and Dry Seasons,” Science of the Total Environment, Vol. 367, No. 2-3, 2006, pp. 999-1009. doi:10.1016/j.scitotenv.2006.03.001

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.