Applications and Technology of Electronic Nose for Clinical Diagnosis

Abstract

Rapid advances in sensor technologies have facilitated the development of high-performance electronic noses that can detect and discriminate volatile compounds in situ. The research and development of electronic noses has resulted in a new qualitative and semi-quantitative detection approach in the field of clinical diagnostics. Electronic noses have a clear potential to be a non-invasive, simple and rapid but above all accurate early diagnostic screening tool. This review collates existing knowledge of recent advances in electronic nose technologies and applications.

Share and Cite:

Chen, S. , Wang, Y. and Choi, S. (2013) Applications and Technology of Electronic Nose for Clinical Diagnosis. Open Journal of Applied Biosensor, 2, 39-50. doi: 10.4236/ojab.2013.22005.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] F. Rock, N. Barsan and U. Weimar, “Electronic Nose: Current Status and Future Trends,” Chemical Reviews, Vol. 108, No. 2, 2008, pp. 705-725. doi:10.1021/cr068121q
[2] A. P. F. Turner and N. Magan, “Electronic Noses and Disease Diagnostics,” Nature Reviews, Vol. 2, No. 2, 2004, pp. 161-166. doi:10.1038/nrmicro823
[3] J. W. Gardner and P. N. Bartlett, “A Brief History of Electronic Noses,” Sensors and Actuators B, Vol. 18-19, No. 1-3, 1994, pp. 211-220.
[4] J. L. Valera, B. Togores and B. G. Cosio, “Use of the Electronic Nose for Diagnosing Respiratory Diseases,” Archivos de Bronconeumología, Vol. 48, No. 6, 2012, pp. 187-188. doi:10.1016/j.arbr.2012.03.002
[5] M. Peris and L. Escuder-Gilabert, “A 21st Century Technique for Food Control: Electronic Noses,” Analytica Chimica Acta, Vol. 638, No. 1, 2009, pp. 1-15. doi:10.1016/j.aca.2009.02.009
[6] M. Bernabei, G. Pennazza, M. Santonico, C. Corsi, C. Roscioni, R. Paolesse, C. D. Natale and A. D’Amico, “A Preliminary Study on the Possibility to Diagnose Urinary Tract Cancers by an Electronic Nose,” Sensors & Actuators: B. Chemical, Vol. 131, No. 1, 2008, pp. 1-4. doi:10.1016/j.snb.2007.12.030
[7] S. Kanoh, H. Kobayashi, and K. Motoyoshi, “Exhaled Ethane: An in Vivo Biomarker of Lipid Peroxidation in Interstitial Lung Diseases,” Chest, Vol. 128, No. 4, 2005, pp. 2387-2392. doi:10.1378/chest.128.4.2387
[8] E. Dixon, C. Clubb, S. Pittman, L. Ammann, Z. Rasheed, N. Kazmi, A. Keshavarzian, P. Gillevet, H. Rangwala and R. D. Couch, “Solid-Phase Microextraction and the Human Fecal VOC Metabolome,” PLoS ONE, Vol. 6, No. 4, 2011, pp. 371-380. doi:10.1371/journal.pone.0018471
[9] A. Nordberg, M. Hansson, I. Sundh, E. Nordkvist, H. Carisson and B. Mathisen, “Monitoring of a Biogas Process Using Electronic Gas Sensors and Near-Infrared Spectroscopy (NIR),” Water Science and Technology, Vol. 41, No. 3, 2000, pp. 1-8.
[10] J. Hartmann, J. Auge and P. Hauptmann, “Using the Quartz-Crystal-Microbalance Principle for Gas Detection with Reversible and Irreversible Sensors,” Sensors and Actuators B, Vol. 19, No. 1-3, 1994, pp. 429-433. doi:10.1016/0925-4005(93)01025-Y
[11] J. Ricco, R. M. Crooks and G. C. Osbourn, “Surface Acoustic Wave Chemical Sensor Arrays: New Chemically Sensitive Interfaces Combined with Novel Cluster Analysis to Detect Volatile Organic Compounds and Mixtures,” Accounts of Chemical Research, Vol. 31, No. 5, 1998, pp. 289-296. doi:10.1021/ar9600749
[12] B. C. Sisk and N. S. Lewis, “Estimation of Chemical and Physical Characteristics of Analyte Vapors Through Analysis of the Response Data of Arrays of Polymer- Carbon Black Composite Vapor Detectors,” Sensors and Actuators B, Vol. 96, No. 1, 2003, pp. 268-282. doi:10.1016/S0925-4005(03)00543-4
[13] K. J. Albert, D. R. Walt, D. S. Gill and T. C. Pearce, “Optical Multibead Arrays for Simple and Complex Odor Discrimination,” Analytical Chemistry, Vol. 73, No. 11, 2001, pp. 2501-2508. doi:10.1021/ac001137a
[14] A. Kolmakov and M. Moskovits, “Chemical Sensing and Catalysis by Onedimensional Metal-Oxide Nanostructures,” Annual Review of Materials Research, Vol. 34, 2004, pp. 151-180. doi:10.1146/annurev.matsci.34.040203.112141
[15] J. W. Gardner and P. N. Bartlett, “Electronic Noses: Principles and Applications,” Oxford University Press, Oxford, 1999.
[16] T. Maekawa, K. Suzuki, T. Takada, T. Kobayashi and M. Egashira, “Odor Identification Using a SnO2-Based Sensor Array,” Sensors and Actuators B, Vol. 80, No. 1, 2001, pp. 51- 58.
[17] J. Getino, L. Ares, J. I. Robla, M. C. Horrillo, I. Sayago, M. J. Fernandez, J. Rodrigo and J. Gutierrez, “Environmental Applications of Gas Sensor Arrays: Combustion Atmospheres and Contaminated Soils,” Sensors and Actuators B, Vol. 59, No. 2, 1999, pp. 249-254. doi:10.1016/S0925-4005(99)00229-4
[18] S. Zampolli, I. Elmi, F. Ahmed, M. Passini, G. C. Cardinali, S. Nicoletti and L. Dori, “An Electronic Nose Based on Solid State Sensor Arrays for Low-Cost Indoor Air Quality Monitoring Applications,” Sensors and Actuators B, Vol. 101, No. 1-2, 2004, pp. 39-46.
[19] S. Ehrmann, J. Jungst, J. Goschnick and D. Everhard, “Application of a Gas Sensor Microarray to Human Breath Analysis,” Sensors and Actuators B, Vol. 65, No. 1, 2000, pp. 247-249.
[20] P. Moseley, “Materials Selection for Semiconductor Gas Sensors,” Sensors and Actuators B: Chemical, Vol. 6, No. 1-3, 1992, pp. 149-156. doi:10.1016/0925-4005(92)80047-2
[21] N. White and J. D. Turner, “Thick-Film Sensors: Past, Present and Future, Measurement,” Science and Technology, Vol. 8, No. 1, 1997, pp. 1-20.
[22] D. Kohl, “Function and Applications of Gas Sensors,” Journal of Physics D: Applied Physics, Vol. 34, No. 19, 2001, pp. R125-R149. doi:10.1088/0022-3727/34/19/201
[23] S. Aathithan, J. C. Plant, A. N. Chaudry and G. L. French, “Diagnosis of Bacteriuria by Detection of Volatile Organic Compounds in Urine Using an Automated Headspace Analyzer with Multiple Conducting Polymer Sensors,” Journal of Clinical Microbiology, Vol. 39, No. 7, 2001, pp. 2590-2593. doi:10.1128/JCM.39.7.2590-2593.2001
[24] I. Eisele, T. Doll and M. Burgmair, “Low Power Gas Detection with Fet Sensors,” Sensors and Actuators B: Chemical, Vol. 78, No. 1-3, 2001, pp. 19-25. doi:10.1016/S0925-4005(01)00786-9
[25] R. Fend, A. H. J. Kolk, C. Bessant, P. Buijtels, P. R. Klatser, A. C. Woodman, “Prospects for Clinical Application of Electronic-Nose Technology to Early Detection of Mycobacterium tuberculosis in culture and sputum,” Journal of Clinical Microbiology, Vol. 44, No. 6, 2006, pp. 2039-2045. doi:10.1128/JCM.01591-05
[26] H. Bai and G. Shi, “Gas Sensors Based on Conducting Polymers,” Sensors, Vol. 7, No. 3, 2007, pp. 267-307. doi:10.3390/s7030267
[27] D. James, S. M. Scott, Z. Ali and W. T. O’Hare, “Chemical Sensors for Electronic Nose Systems,” Microchimica Acta, Vol. 149, No. 1-2, 2005, pp. 1-17. doi:10.1007/s00604-004-0291-6
[28] E. H. Oh, H. S. Song and T. H. Park, “Recent Advances in Electronic and Bioelectronic Noses and Their Biomedical Applications,” Enzyme and Microbial Technology, Vol. 48, No. 6, 2011, pp.427-437. doi:10.1016/j.enzmictec.2011.04.003
[29] S. Kladsomboon, M. Lutz, T. Pongfa and T. Kerdcharoen, “An Optical Artificial Nose System for Odor Classifications Based on LED Arrays,” Proceedings of the 8th International Conference on Electrical Engineering/Electronics, Bangkok, 17-19 May 2011, pp. 145-148.
[30] A. Eambaipreuk, “Breath Monitoring Based on the Optical Electronic Nose System,” Proceedings of Biomedical Engineering International Conference (BMEICON), Bang- kok, 29-31 January 2012, pp. 63-66.
[31] T. C. Pearce, S. S. Schiffman, H. T. Nagle and J. W. Gardner, “Handbook of Machine Olfaction: Electronic Nose Technology,” ChemPhysChem, Vol. 4, No. 11, 2003, pp. 1265-1266. doi:10.1002/cphc.200390115
[32] Y. Mendelson, “The Biomedical Engineering Handbook,” CRC Press, LLC, Florida, 2000.
[33] C. Wang and P. Sahay, “Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits,” Sensors, Vol. 9, No. 10, 2009, pp. 8230-8262. doi:10.3390/s91008230
[34] K. Mitsubayashi, T. Minamide, K. Otsuka, H. Kudo and H. Saito, “Optical Bio-Sniffer for Methyl Mercaptan in Halitosis,” Analytica Chimica Acta, Vol. 573, 2006, pp. 75-80. doi:10.1016/j.aca.2006.01.062
[35] S. Choi, Y. Yang, J. Chae, “Surface Plasmon Resonance Protein Sensor Using Vroman Effect,” Biosensors and Bioelectronics, Vol. 24, No. 4, 2008, pp. 893-899. doi:10.1016/j.bios.2008.07.036
[36] P. Wang, X. Chen, F. Xu, D. Lu, W. Cai , K. Ying, Y. Wang and Y. Hu, “Development of Electronic Nose for Diagnosis of Lung Cancer at Early Stage,” Proceedings of the 5th International Conference on Information Technology and Application in Biomedicine, Shenzhen, 30-31 May 2008, pp. 589-591.
[37] W. Feng, R. Hettiarachchi1, S. Sato, K. Kakushima, M. Niwa, H. Iwai, K. Yamada and K. Ohmoril, “Advantages of Silicon Nanowire Metal-Oxide-Semiconductor Field-Effect Transistors over Planar Ones in Noise Properties,” Japanese Journal of Applied Physics, Vol. 51, No. 4, 2012, Article ID: 04DC06.
[38] A. Oprea, N. Barsan and U. Weimar, “Characterization of Granular Metal Oxide Semiconductor Gas Sensitive Layers by Using Hall Effect Based Approaches,” Journal of Physics D: Applied Physics, Vol. 40, No. 23, 2007, pp. 7217-7237. doi:10.1088/0022-3727/40/23/S05
[39] J. Lee, W. D. Kim and H. Lim, “Facile Fabrication of Conducting Polymer Nanowire Based Field Effect Transistor with Controlled Shape and Position,” Microelectronic Engineering, Vol. 98, 2012, pp. 382-385. doi:10.1016/j.mee.2012.07.012
[40] M. E. Vaschetto, A. P. Monkman and M. Springborg, “First-Principles Studies of Some Conducting Polymers: PPP, PPy, PPV, PPyV, and PANI,” Journal of Molecular Structure (Theochem), Vol. 468, No. 3, 1999, pp. 181- 191. doi:10.1016/S0166-1280(98)00565-X
[41] C. Luo and A. Chakraborty, “Effects of Dimensions on the Sensitivity of a Conducting Polymer Microwiresensor,” Microelectronics Journal, Vol. 40, No. 6, 2009, pp. 912–920. doi:10.1016/j.mejo.2008.11.064
[42] M. L. Gabriele, G. Wollstein, H. Ishikawa, J. Xu, J. Kim, L. Kagemann, L. S. Folio and J. S. Schuman, “Three dimensional Optical Coherence Tomography Imaging: Advantages and Advances,” Progress in Retinal and Eye Research, Vol. 29, No. 6, 2010, pp. 556-579. doi:10.1016/j.preteyeres.2010.05.005
[43] M. Blumentritt, K. Melhorn, J. Flachsbarth, M. Kroener, W. Kowalsky and H. H. Johannes, “A Novel Fabrication Method of Fiber-Optical Planar Transmission Sensors for Monitoring pH in Concrete Structures,” Sensors and Actuators B, Vol. 131, No. 2, 2008, pp. 504-508. doi:10.1016/j.snb.2007.12.034
[44] A. L. Smith and H. M. Shirazi, “Principles of Quartz Crystal Microbalance/Heat Conduction Calorimetry: Measurement of the Sorption Enthalpy of Hydrogen in Palladium,” Thermochimica Acta, Vol. 432, No. 2, 2005, pp. 202-211. doi:10.1016/j.tca.2005.03.017
[45] B. Pejcic, E. Crookea, C. M. Doherty, A. J. Hill, M. Myers, X. Qia and A. Rossa, “The Impact of Water and Hydrocarbon Concentration on the Sensitivity of a Polymer-Based Quartz Crystal Microbalance Sensor for Organic Compounds,” Analytica Chimica Acta, Vol. 703, No. 1, 2011, pp. 70-79.
[46] B. Pejcic, C. Barton, E. Crooke, P. Eadington, E. Jee and A. Ross, “Hydrocarbon Sensing. Part 1: Some Important Aspects about Sensitivity of a Polymer-Coated Quartz Crystal Microbalance in the Aqueous Phase,” Sensors and Actuators B, Vol. 135, No. 2, 2009, pp. 436-443. doi:10.1016/j.snb.2008.09.044
[47] G. Xiea, P. Suna, X. Yana, X. Dua and Y. Jianga, “Fabrication of Methane Gas Sensor by Layer-by-Layer Self- Assembly of Polyaniline/PdO Ultra Thin Films on Quartz Crystal Microbalance,” Sensors and Actuators B: Chemical ,Vol. 145, No. 1, 2010, pp. 373-377. doi:10.1016/j.snb.2009.12.035
[48] F. D. Lai and H. M. Huang, “Fabrication of High Frequency and Low-Cost Surface-Acoustic Wave Filters Using Near Field Phase Shift Photolithography,” Microelectronic Engineering, Vol. 83, No. 4, 2006, pp. 1407-1409. doi:10.1016/j.mee.2006.01.106
[49] S. Krishnamoorthy and A. A. Iliadis, “Properties of High Sensitivity ZnO Surface Acoustic Wave Sensors on SiO2/ (100) Si Substrates,” Solid-State Electronics, Vol. 52, No. 11, 2008, pp. 1710-1716. doi:10.1016/j.sse.2008.06.039
[50] L. Fan, H. Ge, S. Y. Zhang, H. Zhang and J. Zhu, “Optimization of Sensitivity Induced by Surface Conductivity and Sorbed Mass in Surface Acoustic Wave Gas Sensors,” Sensors and Actuators B: Chemical, Vol. 171-172, 2012, pp. 1272-1276. doi:10.1016/j.snb.2012.05.046
[51] M. H. Ervina, B. S. Millera, B. Hanrahana, B. Mailly and T. Palacios, “A Comparison of Single-Wall Carbon Nanotube Electrochemical Capacitor Electrode Fabrication Methods,” Electrochimica Acta, Vol. 65, 2012, pp. 37-43. doi:10.1016/j.electacta.2012.01.060
[52] H. Kang, S. Lim, N. Park, K.-Y. Chun and S. Baik, “Improving the Sensitivity of Carbon Nanotube Sensors by Benzene Functionalization,” Sensors and Actuators B: Chemical, Vol. 147, No. 1, 2010, pp. 316-321. doi:10.1016/j.snb.2010.03.028
[53] J. Zheng, Q. Q. Zhang, X. C. He, M. J. Gao, X. F. Ma and G. Li, “Nanocomposites of Carbon Nanotube (CNTs)/ CuO with High Sensitivity to Organic Volatiles at Room Temperature,” Procedia Engineering, Vol. 36, 2012, pp. 235-245. doi:10.1016/j.proeng.2012.03.036
[54] V. Casey, J. Cleary, G. D. Arcy and J. B. McMonagle, “Calorimetric Combustible Gas Sensor Based on a Planar Thermopile Array: Fabrication, Characterisation, and Gas Response,” Sensors and Actuators B: Chemical, Vol. 96, No. 1, 2003, pp. 114-123. doi:10.1016/S0925-4005(03)00510-0
[55] P. Kirchner, J. Oberlander, P. Friedrich, J. Berger, G. Rysstad, M. Keusgen and M. J. Schoning, “Realisation of A Calorimetric Gas Sensor on Polyimide Foil for Applications in Aseptic Food Industry,” Sensors and Actuators B: Chemical, Vol. 170, 2012, pp.60-66. doi:10.1016/j.snb.2011.01.032
[56] E. L. Hines, P. Boilot, J. L. W. Gardner and M. A. Gongora, “Pattern Analysis for Electronic Noses,” In: T. Pearce, et al., Eds., Handbook of Machine Olfaction: Electronic Nose Technology, Wiley-VCH, Weinheim, 2003, pp. 130-160.
[57] R. O. Gutierrez, “Pattern Analysis for Machine Olfaction: A Review,” IEEE Sensors Journal, Vol. 2, No. 3, 2006, pp. 189-202.
[58] D. L. G. González, R. Aparicio and G. Y. Aceites, “Sensors: From Biosensors to the Electronic Nose,” Grasas y Aceites, Vol. 53, No. 1, 2002, pp. 96-114.
[59] S. Choi, S. Huang, J. Li and J. Chae, “Monitoring Protein Distributions Based on Patterns Generated by Protein Adsorption Behavior in a Microfluidic Channel,” Lab Chip, Vol. 11, 2011, pp. 3681-3688. doi:10.1039/c1lc20680j
[60] K. Aamir and F. Hasan, “Principal Component Analysis- Linear Discriminant Analysis Feature Extractor for Pattern Recognition,” IJCSI International Journal of Computer Science Issues, Vol. 8, No. 6, 2011, p. 267.
[61] A. K. Pavlou, N. Magan, C. McNulty, J. M. Jones, D. Sharp, J. Brown and A. P. F. Turner, “Use of an Electronic Nose System for Diagnoses of Urinary Tract Infections,” Biosensors and Bioelectronics, Vol. 17, No. 10, 2002, pp. 893-899. doi:10.1016/S0956-5663(02)00078-7
[62] S. Aathithan, J. C. Plant, A. N. Chaudry and G. L. French, “Diagnosis of Bacteriuria by Detection of Volatile Organic Compounds in Urine Using an Automated Head- space Analyzer with Multiple Conducting Polymer Sensors,” Journal of Clinical Microbiology, Vol. 39, No. 7, 2001, pp. 2590-2593. doi:10.1128/JCM.39.7.2590-2593.2001
[63] N. Guernion, N. M. Ratcliffe, P. T. Spencer-Phillips and R. A. Howe, “Identifying Bacteria in Human Urine: Current Practice and the Potential for Rapid, Near-Patient Diagnosis by Sensing Volatile Organic Compounds,” Clinical Chemistry and Laboratory Medicine, Vol. 39, No. 10, 2001, pp. 893-906. doi:10.1515/CCLM.2001.146
[64] V. Kodogiannis and E. Wadge, “The Use of Gas-Sensor Arrays to Diagnose Urinary Tract Infections,” International Journal of Neural Systems, Vol. 15, No. 5, 2005, pp. 363-376. doi:10.1142/S0129065705000347
[65] J. W. Yates, M. J. Chappell, J. W. Gardner, C. S. Dow, C. Dowson, A. Hamood, F. Bolt and L. Beeby, “Data Reduction in Headspace Analysis of Blood and Urine Samples for Robust Bacterial Identification,” Computer Methods and Programs in Biomedicine, Vol. 79, No. 3, 2005, pp. 259-271.doi:10.1016/j.cmpb.2005.04.003
[66] P. Ying, G. A. Sonn, M. L. Y. Sin, K. E. Mach, M. Shih, V. Gau, P. K. Wong and J. C. Liao, “Electrochemical Immunosensor Detection of Urinary Lactoferrin in Clinical Samples for Urinary Tract Infection Diagnosis,” Biosensors and Bioelectronics, Vol. 26, No. 2, 2010, pp. 649-654. doi:10.1016/j.bios.2010.07.002
[67] A. K. Pavlou, N. Magan, J. M. Jones, J. Brown, P. Klatser and A. P. Turner, “Detection of Mycobacterium Tuberculosis (TB) in Vitro and in Situ Using an Electronic Nose in Combination with a Neural Network System,” Biosensors and Bioelectronics, Vol. 20, No. 3, 2004, pp. 538-544. doi:10.1016/j.bios.2004.03.002
[68] M. Phillips, V. Basa-Dalay, G. Bothamley, R. N. Cataneo, P. K. Lam, M. P. R. Natividad, P. Schmitt and J. Wai, “Breath Biomarkers of Active Pulmonary Tuberculosis,” Tuberculosis, Vol. 90, No. 2, 2010, pp. 145-151. doi:10.1016/j.tube.2010.01.003
[69] T. M. Henao, S. M. Irwin, S. Shang, D. Ordway and I. M. Orme, “T Lymphocyte Surface Expression of Exhaustion Markers as Biomarkers of the Efficacy of Chemotherapy for Tuberculosis,” Tuberculosis, Vol. 91, No. 4, 2011, pp. 308-313. doi:10.1016/j.tube.2011.04.001
[70] S. Y. Lai, O. F. Deffenderfer, W. Hanson, M. P. Phillips and E. R. Thaler, “Identification of Upper Respiratory Bacterial Pathogens with the Electronic Nose,” Laryngoscope, Vol. 112, No. 6, 2002, pp. 975-979. doi:10.1097/00005537-200206000-00007
[71] M. E. Shykhon, D. W. Morgan, R. Dutta, E. L. Hines and J. W. Gardner, “Clinical Evaluation of the Electronic Nose in the Diagnosis of Ear, Nose and Throat Infection: A Preliminary Study,” The Journal of Laryngology & Otology, Vol. 118, No. 9, 2004, pp. 706-709. doi:10.1258/0022215042244660
[72] R. Dutta, D. Morgan, N. Baker, J. W. Gardner and E. L. Hines, “Identification of Staphylococcus Aureus Infections in Hospital Environment: Electronic Nose Based Approach,” Sensors and Actuators B: Chemical, Vol. 109, No. 2, 2005, pp. 355-362. doi:10.1016/j.snb.2005.01.013
[73] C. O. Olopade, M. Zakkar, W. I. Swedler and I. Rubinstein, “Exhaled Pentane Levels in Acute Asthma,” Chest Journal, Vol. 111, No. 4, 1997, pp. 862-865. doi:10.1378/chest.111.4.862
[74] P. Montuschi, M. Corradi, G. Ciabattoni, J. Nightingale, S. A. Kharitonov and P. J. Barnes, “Increased 8-Isoprostane, a Marker of Oxidative Stress, in Exhaled Condensate of Asthma Patients,” American Journal of Respiratory and Critical Care Medicine, Vol. 160, No. 1, 1999, pp. 216-220. doi:10.1164/ajrccm.160.1.9809140
[75] P. Paredi, S. A. Kharitonov and P. J. Barnes, “Elevation of Exhaled Ethane Concentration in Asthma,” American Journal of Respiratory and Critical Care Medicine, Vol. 162, No. 4, 2000, pp. 1450-1454. doi:10.1164/ajrccm.162.4.2003064
[76] A. D. Smith, J. O. Cowan, S. Filsell, C. McLachlan, G. Monti-Sheehan, P. Jackson and D. R. Taylor, “Diagnosing Asthma: Comparisons between Exhaled Nitric Oxide Measurements and Conventional Tests,” American Journal of Respiratory and Critical Care Medicine, Vol. 169, No. 4, 2004, pp. 473-478. doi:10.1164/rccm.200310-1376OC
[77] S. Dragonieri, R. Schot, B. J. Mertens, S. C. Le, S. A. Gauw, A. Spanevello, O. Resta, N. Willard, T. Vink, K. Rabe, E. Bel and P. Sterk, “An Electronic Nose in the Discrimination of Patients with Asthma and Controls,” The Journal of Allergy and Clinical Immunology, Vol. 120, No. 4, 2007, pp. 856-862. doi:10.1016/j.jaci.2007.05.043
[78] K. Kostikas, G. Papatheodorou, K. Psathakis, P. Panagou and S. Loukides, “Prostaglandin E2 in the Expired Breath Condensate of Patients with Asthma,” European Respiratory Journal, Vol. 22, No. 5, 2003, pp. 743-747. doi:10.1183/09031936.03.00000603
[79] K. Kostikas, M. Gaga, G. Papatheodorou, T. Karamanis, D. Orphanidou and S. Loukides, “Leukotriene B4 in Exhaled Breath Condensate and Sputum Supernatant in Patients with COPD and Asthma,” Chest Journal, Vol. 127, No. 5, 2005, pp. 1553-1559. doi:10.1378/chest.127.5.1553
[80] G. E. Carpagnano, M. P. F. Barbaro, O. Resta, E. Gramiccioni, N. V. Valerio, P. Bracciale and G. Valerio, “Exhaled Markers in the Monitoring of Airways Inflammation and Its Response to Steroid’s Treatment in Mild Persistent Asthma,” European Journal of Pharmacology, Vol. 519, No. 1-2, 2005, pp. 175-181. doi:10.1016/j.ejphar.2005.06.034
[81] A. M. Fortuna, T. Feixas, M. González and P. Casan, “Diagnostic Utility of Inflammatory Biomarkers in Asthma: Exhaled Nitric Oxide and Induced Sputum Eosinophil Count,” Respiratory Medicine, Vol. 101, No. 11, 2007, pp. 2416-2421. doi:10.1016/j.rmed.2007.05.019
[82] J. S. Debley, E. S. Cochrane, G. J. Redding and E. R. Carter, “Lung Function and Biomarkers of Airway Inflammation during and after Hospitalization for Acute Exacerbations of Childhood Asthma Associated with Viral Respiratory Symptoms,” Annals of Allergy, Asthma & Immunology, Vol. 109, No. 2, 2012, pp. 114-120. doi:10.1016/j.anai.2012.06.004
[83] N. Snell and P. Newbold, “The Clinical Utility of Biomarkers in Asthma and COPD,” Current Opinion in Pharmacology, Vol. 8, No. 3, 2008, pp. 222-235. doi:10.1016/j.coph.2008.04.001
[84] M. Phillips, R. N. Cataneo, B. A. Ditkoff, P. Fisher, J. Greenberg, R. Gunawardena, C. S. Kwon, F. Rahbari- Oskoui and C. Wong, “Volatiles Markers of Breast Cancer in the Breath,” The Breast Journal, Vol. 9, No. 3, 2003, pp. 184-191. doi:10.1046/j.1524-4741.2003.09309.x
[85] M. Corradi, A. Pesci, R. Casana, R. Alinovi, M. Goldoni, M. V. Vittoria and A. Cuomo, “Nitrate in Exhaled Breath Condensate of Patients with Different Airway Diseases,” Nitric Oxide-Biology and Chemistry, Vol. 8, No. 1, 2003, pp. 26-30.
[86] B. Balint, S. A. Kharitonov, T. Hanazawa, L. E. Donnelly, P. L. Shah, M. E. Hodson and P. J. Barnes, “Increased Nitrotyrosine in Exhaled Breath Condensate in Cystic Fibrosis,” European Respiratory Journal, Vol. 17, No. 6, 2001, pp. 1201-1207.doi:10.1183/09031936.01.00072501
[87] M. Corradi, M. Majori, G. C. Cacciani, G. F. Consigli, E. de’Munari and A. Pesci, “Increased Exhaled Nitric Oxide in Patients with Stable Chronic Obstructive Pulmonary Disease,” Thorax, Vol. 54, No. 7, 1999, pp. 572-575. doi:10.1136/thx.54.7.572
[88] W. J. van Beurden, G. A. Harff, P. N. R. Dekhuijzen, M. J. van den Bosch, J. P. Creemers and F. W. Smeenk, “An Efficient and Reproducible Method for Measuring Hydrogen Peroxide in Exhaled Breath Condensate,” Respiratory Medicine, Vol. 96, No. 3, 2002, pp. 197-203. doi:10.1053/rmed.2001.1240
[89] Z. L. Borrill, R. C. Starkey and S. D. Singh, “Variability of Exhaled Breath Condensate Leukotriene B4 and 8-Isoprostane in COPD Patients,” International Journal of Chronic Obstructive Pulmonary Disease, Vol. 2, No. 1, 2007, pp. 71-76.
[90] W. J. van Beurden, P. N. Dekhuijzen, G. A. Harff and F. W. Smeenk, “Variability of Exhaled Hydrogen Peroxide in Stable COPD Patients and Matched Healthy Controls,” Respiration, Vol. 69, No, 3, 2002, pp. 211-216. doi:10.1159/000063622
[91] J. B. Sidbury, E. K. Smith and W. Harlan, “An Inborn Error of Short-Chain Fatty Acid Metabolism: The Odor of Sweaty Feet Syndrome,” The Journal of Pediatrics, Vol. 70, No. 1, 1967, pp. 8-15. doi:10.1016/S0022-3476(67)80160-4
[92] R. F. Machado, D. Laskowski, O. Deffenderfer, et al., “Detection of Lung Cancer by Sensor Array Analyses of Exhaled Breath,” American Journal of Respiratory and Critical Care Medicine, Vol. 171, No. 11, 2005, pp. 1286-1291. doi:10.1164/rccm.200409-1184OC
[93] D. A. Pennazza, M. Santonico, E. Martinelli, C. Roscioni and G. Galluccio, “An Investigation on Electronic Nose Diagnosis of Lung Cancer,” Lung Cancer, Vol. 68, No. 2, 2010, pp. 170-176. doi:10.1016/j.lungcan.2009.11.003
[94] B. Kateb, M. A. Ryan, M. L. Homer, L. M. Lara, Y. Yin, K. Higa and M. Y. Chen, “Sniffing Out Cancer Using the JPL Electronic Nose: A Pilot Study of a Novel Approach to Detection and Differentiation of Brain Cancer,” Neuro- Image, Vol. 47, No. S2, 2009, pp. T5-T9. doi:10.1016/j.neuroimage.2009.04.015
[95] G. Horvath, J. Chilo and T. Lindblad, “Different Volatile Signals Emitted by Human Ovarian Carcinoma and Healthy Tissue,” Future Oncology, Vol. 6, No. 7, 2010, pp. 1043-1049. doi:10.2217/fon.10.60
[96] M. Bruins, Z. Rahimc, A. Bos, W. W. van de Sande, H. P. Endtz and A. van Belkum, “Diagnosis of Active Tuberculosis by E-Nose Analysis of Exhaled Air,” Tuberculosis, Vol. 93, No. 2, 2012, pp. 1-7.
[97] S. Dragonieri, J. T. Annema, R. Schot, M. P. C. van der Schee, A. Spanevello, P. Carratú, O. Resta, K. F. Rabe and P. J. Sterk, “An Electronic Nose in the Discrimination of Patients with Non-Small Cell Lung Cancer and COPD,” Lung Cancer, Vol. 64, No. 2, 2009, pp. 166-170. doi:10.1016/j.lungcan.2008.08.008
[98] M. Schaechter, G. Medoff and B. I. Eisenstein, “Mechanisms of Microbial Disease,” Lippincott Williams & Wilkins., Baltimore, 1999.
[99] O. Honkinen, O. Lehtonen, O. Ruuskanen, P. Huovinen and J. Mertsola, “Cohort Study of Bacterial Species Causing Urinary Tract Infection and Urinary Tract Abnormalities in Children,” British Medical Journal, Vol. 318, No. 7186, 1999, pp. 770-771. doi:10.1136/bmj.318.7186.770
[100] S. Krcmery, M. Dubrava and V. Krcmery Jr, “Fungal Urinary Infections in Patients at Risk,” International Journal of Antimicrobial Agents, Vol. 11, No. 3, 1999, pp. 289-291. doi:10.1016/S0924-8579(99)00032-1
[101] R. Fend, “Development of Medical Point-of-Care Applications for Renal Medicine and Tuberculosis Based on Electronic Nose Technology,” Ph.D. Thesis, Cranfield University, Silsoe, 2004.
[102] F. D. Francescoa, R. Fuocob, M. G. Trivellaa and A. Ceccarinib, “Breath Analysis: Trends in Techniques and Clinical Applications,” Microchemical Journal, Vol. 79, No. 1, 2005, pp. 405-410. doi:10.1016/j.microc.2004.10.008

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.