Enzymatic activities and kinetic properties of β-glucosidase from selected white rot fungi

Abstract

Beta-glucosidase is among the suite of enzymes produced by white rot fungi (WRF) to biodegrade plant biomass. This study investigated the enzymatic activities and kinetic properties of β-glucosidase from seventeen WRF comprised of the following species from various geographical locations: Pleurotus ostreatus, Auricularia auricular, Polyporus squamosus, Trametes versicolor, Lentinula edodes, and Grifola frondosa. All the WRF studied showed β-glucosidase activities. Significant variations in protein and carbohydrate contents were also recorded. Beta-glucosidase activities after 30 min of incubation ranged from 6.4 μg (T. versicolor) to 225 μg (G. frondosa). The calculated kinetic constant (Km) ranged from 0.47 μM (A. auricular-1120) to 719 μM (L. edodes-7). The Vmax depending on the kinetic transformation model ranged from 0.21 μg·min-1 (T. versicolor) to 9.70 μg·min-1 (G. frondosa-28). Beta-glucosidase activities also exhibited pH optima between 3.5 and 5.0 while temperature optima were between 60°C and 70°C with some media exhibiting a secondary temperature peak at 90°C attributable to the presence of thermostable isoenzyme. WRF if appropriately screened and purified can be harnessed to potentially improve the bio-conversion of cellulose to glucose and also facilitate efficient plant biomass biodegradation and production of useful plant bio-products.

Share and Cite:

Mfombep, P. , Senwo, Z. and Isikhuemhen, O. (2013) Enzymatic activities and kinetic properties of β-glucosidase from selected white rot fungi. Advances in Biological Chemistry, 3, 198-207. doi: 10.4236/abc.2013.32025.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Barr, D.P. and Aust, S.D. (1994) Mechanisms white rot fungi use to degrade pollutants. Environmental Science and Technology, 28, 78A-87A.
[2] Wasser, S.P. (2002) Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Applied Microbiology and Biotechnology, 60, 258-274. doi:10.1007/s00253-002-1076-7
[3] Hadar, Y., Kerem, Z. and Gorodecki, B. (1993) Biodegradation of lignocellulosic agricultural wastes by Pleurotus ostreatus. Journal of Biotechnology, 30, 133-139. doi:10.1016/0168-1656(93)90034-K
[4] Isikhuemhen, O.S., Anoliefo, G.O. and Oghale, O.I. (2003) Bioremediation of crude oil polluted soil by the white rot fungus, Pleurotus tuberregium (Fr.) Sing. Environmental Science and Pollution Research, 10, 108-112. doi:10.1065/espr2002.04.114
[5] Bezalel, L., Hadar, Y. and Cerniglia, C.E. (1996) Mineralization of polycyclic aromatic hydrocarbons by the white rot fungus Pleurotus ostreatus. Applied and Environmental Microbiology, 62, 292-295.
[6] D’Annibale, A., Ricci, M., Leonardi, V., Quaratino, D., Mincione, E. and Petruccioli, M. (2005) Degradation of aromatic hydrocarbons by white rot fungi in a historically contaminated soil. Biotechnology and Bioengineering, 90, 723-731. doi:10.1002/bit.20461
[7] Mukherjee, R. and Nandi, B. (2004) Improvement of in vitro digestibility through biological treatment of water hyacinth biomass by two Pleurotus species. International Biodeterioration and Biodegradation, 53, 7-12. doi:10.1016/S0964-8305(03)00112-4
[8] D’Souza, T.M., Merrit, C.S. and Reddy, C.A. (1999) Lignin-modifying enzymes of the white rot basidiomycete Ganoderma lucidum. Applied and Environmental Microbiology, 65, 5307-5313.
[9] Heinzkill, M., Bech, L., Halkier, T., Schneider, P. and Anke, T. (1998) Characterization of laccases and peroxidases from wood-rotting fungi (family Coprinaceae). Applied and Environmental Microbiology, 64, 1601-1606.
[10] Isikhuemhen, O.S. and Mikiashvili, N.A. (2009) Lignocellulolytic enzymes activity, substrate utilization and mushroom yield by Pleurotus ostreatus cultivated on substrate containing anaerobic digester solids. Journal of Industrial Microbiology and Biotechnology, 36, 13531362. doi:10.1007/s10295-009-0620-1
[11] Isikhuemhen, O.S., Mikiashvili, N.A., Adenipekun, C.O., Ohimain, E. I. and Shahbazi, G. (2012) The tropical white rot fungus, Lentinus squarrosulus Mont.: Lignocellulolytic enzymes activities and sugar release from cornstalks under solid state fermentation. World Journal of Microbiology and Biotechnology, 28, 1961-1966. doi:10.1007/s11274-011-0998-6
[12] Das, M., Royer, T.V. and Leff, L.G. (2007) Diversity of fungi, bacteria, and actinomycetes on leaves decomposing in a stream. Applied and Environmental Microbiology, 73, 756-767. doi:10.1128/AEM.01170-06
[13] Yu, H., Zeng, G., Huang, H., Xi, X., Wang, R., Huang, D., Huang, G. and Li, J. (2007) Microbial community succession and lignocellulose degradation during agricultural waste composting. Biodegradation, 18, 793-802. doi:10.1007/s10532-007-9108-8
[14] Platt, M.W., Hadar, Y. and Chet, I. (1984) Fungal activities involved in lignocellulose degradation by pleurotus. Applied Microbiology and Biotechnology, 20, 150-154. doi:10.1007/BF00252594
[15] Berrin, J.G., Czjzek, M., Kroon, P.A., McLauchlan, W.R., Puigserver, A., Williamson, G. and Juge, N. (2003) Substrate (aglycone) specificity of human cytosolic betaglucosidase. Biochemical Journal, 373, 41-48. doi:10.1042/BJ20021876
[16] Kumar, R., Singh, S. and Singh, O.V. (2008) Bioconversion of lignocellulosic biomass: Biochemical and molecular perspectives. Journal of Industrial Microbiology and Biotechnology, 35, 377-391. doi:10.1007/s10295-008-0327-8
[17] Stockton, B.C., Mitchell, D.J., Grohmann, K. and Himmel, M.E. (1991) Optimum beta-d-glucosidase supplementation of cellulase for efficient conversion of cellulose to glucose. Biotechnology Letters, 13, 57-62. doi:10.1007/BF01033518
[18] Howell, J.A. and Stuck, J.D. (1975) Kinetics of solka floc cellulose hydrolysis by Trichoderma viride cellulase. Biotechnology and Bioengineering, 17, 873-893. doi:10.1002/bit.260170608
[19] Morais, H., Ramos, C., Forgacs, E., Jakab, A. and Cserhati, T. (2004) Enzyme production of Pleurotus ostreatus evaluated by the three-way principal component analysis. Engineering in Life Sciences, 4, 165-170. doi:10.1002/elsc.200420017
[20] Cai, Z., Xing, G., Yan, X., Xu, H., Tsuruta, H., Yagi, K. and Minami, K. (1997) Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilisers and water management. Plant and Soil, 196, 7-14. doi:10.1023/A:1004263405020
[21] Czjzek, M., Cicek, M., Zamboni, V., Burmeister, W.P., Bevan, D.R., Henrissat, B. and Esen, A. (2001) Crystal structure of a monocotyledon (maize ZMGlu1) beta-glucosidase and a model of its complex with p-nitrophenyl beta-D-thioglucoside. Biochemical Journal, 354, 37-46. doi:10.1042/0264-6021:3540037
[22] Langston, J., Sheehy, N. and Xu, F. (2006) Substrate specificity of Aspergillus oryzae family 3 beta-glucosidase. Biochimica Et Biophysica Acta-Proteins and Proteomics, 1764, 972-978. doi:10.1016/j.bbapap.2006.03.009
[23] Saha, A.K. and Brewer, C.F. (1994) Determination of the concentrations of oligosaccharides, complex type carbonyhdrates, and glycoproteins using tthe phenol-sulfuric acid method. Carbohydrate Research, 254, 157-167. doi:10.1016/0008-6215(94)84249-3
[24] Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. doi:10.1016/0003-2697(76)90527-3
[25] Szklarz, G.D., Antibus, R.K., Sinsabaugh, R.L. and Linkins, A.E. (1989) Production of phenol oxidases and peroxidases by wood-rotting fungi. Mycologia, 81, 234240. doi:10.2307/3759705
[26] Morais, H., Ramos, C., Forgacs, E., Cserhati, T., Oliviera, J. and Illes, T. (2001) Three-dimensional principal component analysis employed for the study of the beta-glucosidase production of Lentinus edodes strains. Chemometrics and Intelligent Laboratory Systems, 57, 57-64. doi:10.1016/S0169-7439(01)00121-6
[27] Ng, T.K. and Zeikus, J.G. (1981) Comparison of extracellular cellulase activities of clostridium-thermocellum-lqri and trichoderma-reesei-QM9414. Applied and Environmental Microbiology, 42, 231-240.
[28] Dick, W.A. and Tabatabai, M.A. (1984) Kinetic-parameters of phosphatases in soils and organic waste materials. Soil Science, 137, 7-15. doi:10.1097/00010694-198401000-00002
[29] Dowd, J.E. and Riggs, D.S. (1965) A comparison of estimates of Michaelis-Menten kinetic constants from various linear transformations. Journal Biological Chemistry, 240, 863-869.
[30] Cai, Y.J., Buswell, J.A. and Chang, S.T. (1998) Betaglucosidase components of the cellulolytic system of the edible straw mushroom, Volvariella volvacea. Enzyme and Microbial Technology, 22, 122-129. doi:10.1016/S0141-0229(97)00151-8
[31] Sun, Y.M., Zhang, Y.Z., Liu, N., Li, D.M. and Li, M.Z. (2010) Hydrolysis of genistin and daidzin by a betaglucosidase purified from Lentinula edodes. Journal of Medicinal Plants Research, 4, 2684-2690.
[32] Parry, N.J., Beever, D.E., Owen, E., Vandenberghe, I., Van Beeumen, J. and Bhat, M.K. (2001) Biochemical characterization and mechanism of action of a thermostatble beta-glucosidase purified from Thermoascus aurantiacus. Biochemical Journal, 353, 117-127. doi:10.1042/0264-6021:3530117
[33] Gueguen, Y., Chemardin, P., Labrot, P., Arnaud, A. and Galzy, P. (1997) Purification and characterization of an intracellular beta-glucosidase from a new strain of Leuconostoc mesenteroides isolated from cassava. Journal of Applied Microbiology, 82, 469-476. doi:10.1046/j.1365-2672.1997.00136.x
[34] Jabbar, A., Rashid, M.H., Javed, M.R., Perveen, R. and Malana, M.A. (2008) Kinetics and thermodynamics of a novel endoglucanase (cmcase) from Gymnoascella citrina produced under solid-state condition. Journal of Industrial Microbiology and Biotechnology, 35, 515-524. doi:10.1007/s10295-008-0310-4

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.