Studies on Chemical Resistance of PET-Mortar Composites: Microstructure and Phase Composition Changes

Abstract

Researches into new and innovative uses of waste plastic materials are continuously advancing. These research efforts try to match society’s need for safe and economic disposal of waste materials. The use of recycled plastic aggregates saves natural resources and dumping spaces, and helps to maintain a clean environment. The present articles deals with the resistance to chemical attack of polymer-mortars, which are often used as low-cost promising materials for preventing or repairing various reinforced concrete structures. To gain more knowledge on the efficiency of polymer-mortar composites, four mortar mixtures: one specimen with Portland cement and three mixtures with 2.5, 5, and 7.5 wt% of the substitution of cement by polyethylene terephthalate (PET) were exposed to the influence of aggressive environment (0.5%, 1% and 1.5% HCl acids, 10% NH4Cl, 5% H2SO4 acid and 10% (NH4)2SO4 solutions). The measurements of several properties were carried out, the results were analyzed and the combination of X-ray diffraction, FT-IR spectroscopy, differential thermal analysis (DTA), thermogravimetric (TG) analysis, differential scanning calorimetry (DSC) analysis and the composites were also observed by SEM led to the positive identification of the deterioration products’ formation. From this study, it was found that the addition of PET to the modified mortars, means reducing the penetration of aggressive agents. So, the PET-modified mortars exposed to aggressive environments showed better resistance to chemical attack. The new composites appear to offer an attractive low-cost material with consistent properties. The present study highlights the capabilities of the different methods for the analysis of composites and opened new way for the recycling of PET in polymer-mortars.

Share and Cite:

A. Benosman, M. Mouli, H. Taibi, M. Belbachir, Y. Senhadji, I. Bahlouli and D. Houivet, "Studies on Chemical Resistance of PET-Mortar Composites: Microstructure and Phase Composition Changes," Engineering, Vol. 5 No. 4, 2013, pp. 359-378. doi: 10.4236/eng.2013.54049.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. Miletic, M. Ilic, J. Ranogajec, R. Marinovic-Neducin, and M. Djuric, “Portland Ash Cement Degradation in Ammonium-Sulfate Solution,” Cement and Concrete Research, Vol. 28, No. 5, 1998, pp. 713-725. doi:10.1016/S0008-8846(98)00023-4
[2] Y. Ohama, “Polymer Based Admixtures,” Cement and Concrete Composite, Vol. 20, No. 2-3, 1998, pp. 189-212. doi:10.1016/S0958-9465(97)00065-6
[3] Y. Ohama, “Hand Book of Polymer-Modified Concrete and Mortars, Properties and Process Technology,” Noyes Publications, Park Ridge, 1995, p. 236.
[4] D. W. Fowler, “Polymers in Concrete: A Vision for the 21st Century,” Cement and Concrete Composites, Vol. 21, No. 5-6, 1999, pp. 449-452. doi:10.1016/S0958-9465(99)00032-3
[5] N. Saikia and J. de Brito, “Use of Plastic Waste as Aggregate in Cement Mortar and Concrete Preparation: A review,” Construction and Building Materials, Vol. 34, 2012, pp. 385-401. doi:10.1016/j.conbuildmat.2012.02.066
[6] R. Siddique, J. Khatib and I. Kaur, “Use of Recycled Plastic in Concrete: A review,” Waste Management, Vol. 28, No. 10, 2008, pp. 1835-1852. doi:10.1016/j.wasman.2007.09.011
[7] K. F. Portella, A. Joukoski, R. Franck and R. Derksen, “Reciclagem Secundária de Rejeitos de Porcelanas Elétricas em Estruturas de Concreto: Determinação do Desempenho sob Envelhecimento Acelerado,” Ceramica, Vol. 52, No. 323, 2006, pp. 155-167. doi:10.1590/S0366-69132006000300008
[8] I. Guerra, I. Vivar, B. Llamas, A. Juan and J. Moran, “Eco-efficient Concretes: The Effects of Using Recycled Ceramic Material from Sanitary Installations on The Mechanical Properties of Concrete,” Waste Management, Vol. 29, No. 2, 2009, pp. 643-646. doi:10.1016/j.wasman.2008.06.018
[9] Z. Z. Ismail and E. A. Al-Hashmi, “Use of Waste Plastic in Concrete Mixture as Aggregate Replacement,” Waste Management, Vol. 28, No. 11, 2008, pp. 2041-2047.
[10] S. C. Angulo, C. Ulsen, V. M. John, H. Kahn and M. A. Cincotto, “Chemical-Mineralogical Characterization of C&D Waste Recycled Aggregates from São Paulo, Brazil,” Waste Management, Vol. 29, No. 2, 2009, pp. 721-730.
[11] C. Hoppen, K. F. Portella, A. Joukoski, E. M. Trindade and C. V. Andreóli, “Uso de Lodo de Estação de Tratamento de Agua Centrifugado, em Matriz de Concreto de Cimento Portland para Reduzir o Impacto Ambiental,” Química Nova, Vol. 29, No. 1, 2006, pp. 79-84.
[12] K. S. Rebeiz, “Time-Temperature Properties of Polymer Concrete Using Recycled PET,” Cement and Concrete Composites, Vol. 17, No. 2, 1995, pp. 119-124. doi:10.1016/0958-9465(94)00004-I
[13] YW. Choi, DJ. Moon, YJ. Kim, M. Lachemi, “Characteristics of Mortar and Concrete Containing Fine Aggregate Manufactured from Recycled Waste Polyethylene Tere-phthalate Bottles,” Construction and Building Materials, Vol. 23, No. 8, pp. 2829-2835. doi:10.1016/j.conbuildmat.2009.02.036
[14] Y. W. Choi, D. J. Moon, J. S. Chung and S. K. Cho, “Effects of PET Waste Bottles Aggregate on the Properties of Concrete,” Cement and Concrete Research, Vol. 35, No. 4, 2005, pp. 776-781. doi:10.1016/j.cemconres.2004.05.014
[15] B. JO, G. Tae and C. Kim, “Uniaxial Creep Behavior and Prediction of Recycled-PET Polymer Concrete,” Construction Building Materials, Vol. 21, 2007, pp. 1552-1559. doi:10.1016/j.conbuildmat.2005.10.003
[16] T. Ochi, S. Okubo and K. Fukui, “Development of Recycled PET Fiber and Its Application as Concrete Reinforcing Fiber,” Cement and Concrete Composites, Vol. 29, No. 6, 2007, pp. 448-455. doi:10.1016/j.cemconcomp.2007.02.002
[17] A. Khaloo, M. Dehestani and P. Rahmatabadi, “Mechanical Properties of Concrete Containing a High Volume of Tire-Rubber Particles,” Waste Management, Vol. 28, No. 12, 2008, pp. 2472-2482. doi:10.1016/j.wasman.2008.01.015
[18] J. C. A. Galvão, K. F. Portella, A. Joukoski, R. Mendes and E. S. Ferreira, “Use of waste polymers in concrete for repair of dam hydraulic surfaces,” Construction and Building Materials, Vol. 25, No. 2, 2011, pp. 1049-1055. doi:10.1016/j.conbuildmat.2010.06.073
[19] R. Wang and C. Meyer, “Performance of Cement Mortar Made With Recycled High Impact Polystyrene,” Cement & Concrete Composites, Vol. 34, No. 9, 2012, pp. 975-981. doi:10.1016/j.cemconcomp.2012.06.014
[20] V. Corinaldesi, A. Mazzoli, G. Moriconi, “Mechanical Behaviour and Thermal Conductivity of Mortars Containing Waste Rubber Particles,” Materials and Design, Vol. 32, No. 3, 2011, pp. 1646-1650. doi:10.1016/j.matdes.2010.10.013
[21] A. S. Benosman, H. Taibi, M. Mouli, M. Belbachir and Y. Senhadji, “Diffusion of Chloride Ions in Polymer-Mortar Composites (PET),” Journal of Applied Polymer Science, Vol. 110, No. 3, 2008, pp. 1600-1605. doi:10.1002/app.28587
[22] A. S. Benosman, H. Taïbi, M. Belbachir, I. Bahlouli, M. Mouli, Y. Senhadji and D. Houivet, “Resistance of Polymer (PET)-Mortar Composites to Chloride Penetration,” Proceedings of 7th Asian Symposium on Polymers in Concrete ASPIC 2012, Istanbul, 3-5 October 2012, pp. 387-395.
[23] M. T. Gouasmi, A. S. Benosman, H. Taibi, M. Belbachir and Y. Senhadji, “Elaboration and Characterization of Polymer-Siliceous Sand Composites,” 2nd French Meeting on Insulating Materials RFMI-2, Oran, 17-19 December 2012.
[24] M. T. Gouasmi, “Effects of Polyethylene Terephthalate Lightweight Aggregates on the Properties of Mortar,” Magister Thesis, University of Oran, Oran, 2013, p. 153.
[25] “ECO PET,” 2007. http://www.ecopet.eu/Domino_english/ecopet.htm
[26] The Korea Institute of Resources Recycling, “The Korean Institute of Resources Recycling, Recycling Handbook,” The Korea Institute of Resources Recycling, Seoul, 1999.
[27] S. Miletic, M. Ilic, S. Otovic, R. Folic and Y. Ivanov, “Phase Composition Changes Due to Ammonium-Sul phate: Attack on Portland and Portland Fly Ash Cements,” Construction and Building Materials, Vol. 13, No. 3, 1999, pp. 117-127. doi:10.1016/S0950-0618(99)00017-3
[28] H. F. W. Taylor, “Crystal Structure of Some Double Hydroxide Minerals,” Mineraogicall Magazine, Vol. 39, No. 304, 1973, pp. 247-256. doi:10.1180/minmag.1973.039.304.01
[29] S. Miletic, M. Ilic, J. Ranogajec and M. Djuric, “Sulphate Corrosion of Portland Cement and Portland Cement Mixed With Fly Ash and Slag as a Function of its Composition,” Proceedings of XVI Symposuim on Nordic Concrete Research, Helsinki, 1996, pp. 339-340.
[30] S. Miletic and M. Ilic, “Sulphate Corrosion of Portland Cement with Various Mineral Compositions, Proceedings of the 13th International Corrosion Congress, Melbourne, 1996, pp. 1-7.
[31] V. Zivica and A. Bajza, “Acidic Attack of Cement Based Materials—A Review. Part 1. Principle of Acidic Attack,” Construction and Building Materials, Vol. 15, No. 8, 2001, pp. 331-340. doi:10.1016/S0950-0618(01)00012-5
[32] P. K. Mehta, “Concrete, Properties and Materials,” Prentice-Hall, Upper Saddle River, 1986.
[33] W. H. Gutt and W. H. Harrison, “Chemical Resistance of Concrete,” Concrete, Vol. 11, No. 5, 1997, pp. 35-37.
[34] V. Zivica and A. Bajza, “Acidic Attack of Cement-Based Materials—A Review Part 2. Factors of Rate of Acidic Attack and Protective Measures,” Construction and Building Materials, Vol. 16, 2002, pp. 215-222. doi:10.1016/S0950-0618(02)00011-9
[35] A. S. Benosman, H. Taïbi, M. Belbachir, I. Bahlouli, M. Mouli, Y. Senhadji and D. Houivet, “Mineralogical Study of Polymer-Mortar Composites with PET Polymer by Means of Spectroscopic Analyses,” Materials Sciences and Applications, Vol. 3, No. 3, 2012, pp. 139-150. doi:10.4236/msa.2012.33022
[36] EN 196-3, “Methods of Testing Cement—Part 3: Determination of Setting Time and Soundness,” Comité Européen de Normalisation, Brussels, 1995.
[37] EN 196-1, “Methods of testing cement—Part 1: Determination of Strength,” Comité Européen de Normalisation, Brussels, 1995.
[38] ASTM C 267-97, “Standard Test Methods for Chemical Resistance of Mortars, Grouts, and Monolithic Surfacing and Polymer Concretes,” American Society for Testing and Materials (ASTM) International, West Conshohocken, 1997.
[39] ASTM C1012-04, “Standard Test Method for Length Change of Hydraulic-Cement Mortars Exposed to a Sulfate Solution,” American Society for Testing and Materials (ASTM) International, West Conshohocken, 2004.
[40] C. Carde, G. Escadeillas and R. François, “Use of Ammonium Nitrate Solution to Simulate and Accelerate the Leaching of Cement Pastes due To Deionized Water,” Magazine Concrete Research, Vol. 181, No. 49, 1997, pp. 295-301. doi:10.1680/macr.1997.49.181.295
[41] N. Kaid, M. Cyr, S. Julien and H. Khelafi, “Durability of Concrete Containing a Natural Pozzolan as Defined by a Performance-Based Approach,” Construction and Building Materials, Vol. 23, No. 12, 2009, pp. 3457-3467. doi:10.1016/j.conbuildmat.2009.08.002
[42] Z. T. Chang, X. J. Song, R. Munn, M. Marosszeky, “Using Limestone Aggregates and Different Cements for Enhancing Resistance of Concrete to Sulphuric Acid Attack,” Cement and Concrete Research, Vol. 35, No. 8, 2005, pp. 1486-1494. doi:10.1016/j.cemconres.2005.03.006
[43] S. Goyal, M. Kumar, D. S. Sidhu and B. Bhattacharjee, “Resistance of Mineral Admixture Concrete to Acid Attack,” Journal of Advanced Concrete Technology, Vol. 7, No. 2, 2009, pp. 273-283. doi:10.3151/jact.7.273
[44] H. Siad, H. A. Mesbah, H. Khelafi, S. Kamali-Bernard and M. Mouli, “Effect Of Mineral Admixture on Resistance to Sulphuric and Hydrochloric Acid Attacks in Self-Compacting Concrete,” Canadian Journal of Civil Engineering, Vol. 37, No. 3, 2010, pp. 441-449. doi:10.1139/L09-157
[45] D. Achoura, Ch. Lanos, R. Jauberthie and B. Redjel, “Influence d’une Substitution Partielle du Ciment par du Laitier de Hauts Fourneaux Sur la Résistance des Mortiers en Milieu Acide,” Journal de Physique IV France, EDP Sciences, Vol. 118, No. 1, 2004, pp. 159-164. doi:10.1051/jp4:2004118019
[46] A. S. Benosman, M. Mouli, H. Taibi, M. Belbachir and Y. Senhadji, “Resistance of Polymer (PET)-Mortar Composites to Aggressive Solutions,” International Journal of Engineering Research in Africa, Vol. 5, No. 1, 2011, pp. 1-15. doi:10.4028/www.scientific.net/JERA.5.1
[47] A. Allahverdi and F. Skvára, “Acidic Corrosion of Hydrated Cement Based Materials—Part 1. Mechanism of the Phenomenon,” Ceramics-Silikáty, Vol. 44, No. 3, 2000, pp. 114-120.
[48] A. S. Benosman, “Mechanical Performance and Durability of Cementitious Materials Modified by Adding Polymer (PET),” Ph.D. Thesis, University of Oran, Algeria, 2010.
[49] J.-A. Rossignolo, M.-V.C. Agnesini, “Durability of Polymer-Modified Lightweight Aggregate Concrete,” Cement and Concrete Composites, Vol. 26, No. 4, 2004, pp. 375-380. doi:10.1016/S0958-9465(03)00022-2
[50] J. Monteny, N. De Belie, E. Vincke, W. Verstraete and L. Taerwe, “Chemical and Microbiological Tests to Simulate Sulfuric Acid Corrosion of Polymer-Modified Concrete,” Cement and Concrete Research, Vol. 31, No. 9, 2001, pp. 1359-1365.
[51] S. Chandra and L. Berntsson, “Lightweight Aggregate Concrete-Science, Technology, and Applications,” William Andrew Publishing/Noyes, Chapter 8, 2002, pp. 231-240.
[52] S. Martínez-Ramírez, “Influence of SO2 Deposition on Cement Mortar Hydration,” Cement and Concrete Research, Vol. 29, No. 1, 1999, pp. 107-111. doi:10.1016/S0008-8846(98)00183-5
[53] H. F. W. Taylor, “Studies on the Chemistry and Micro-structures of Cement Pastes,” Proceedings of the British Ceramic Society, Vol. 35, 1984, pp. 65-82.
[54] C. L. Page and M. M. Page, “Durability of Concrete and Cement Composites,” Woodhead Publishing, Cambidge England, 2007, p. 404.
[55] V. Ukraincik, D. Bjecovic and A. Djurekovic, “Concrete corrosion in a nitrogen fertilizer plant,” In: P. J. Sere-daand and G. G. Litvan, Eds., Durability of building materials and components, ASTM, Philadelphia, 1978, pp. 397-409.
[56] A. Vichot and J.-P. Ollivier, “La durabilité des bétons,” Presses de l'école nationale des Ponts et chaussées, ENPC, France, 2008.
[57] A. M. Neville, “The Confused World of Sulfate Attack on Concrete,” Cement and Concrete Research, Vol. 34, No. 8, 2004, pp. 1275-1296. doi:10.1016/j.cemconres.2004.04.004
[58] P. K. Mehta, “Studies on Chemical resistance of low water/cement ratio concretes,” Cement and Concrete Research, Vol. 15, No. 6, 1985, pp. 969-978. doi:10.1016/0008-8846(85)90087-0
[59] F. Rendell and R. Jauberthie, “The Deterioration of Mortar in Sulphate Environments,” Construction and Building Materials, Vol. 13, No. 6, 1999, pp. 321-327. doi:10.1016/S0950-0618(99)00031-8

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.