Vaccination against urinary tract infections caused by E. coli

Abstract

Uropathogenic Escherichia coli (UPEC) causes uncomplicated urinary tract infection (UTI) depicts a prevalent and potentially uncompromising infectious disease. In this analysis, we explained the functions of an immunoproteomics concept to vaccine development that has been successfully employed to recognize vaccine targets in other pathogenic bacteria. Pyelonephritis strains E. coli CFT073 are used for outer membrane isolation mimics urinary tract environment in which iron limitation, osmotic stress, human urine, and exposure to uroepithelial cells are included. During experiments of UTI, the antigens that induce the humoral immune response is to identified, two-dimensional gel electrophoresis are employed for the isolation of outer membrane protein and probed using pooled antisera from 20 CBA/J mice chronically infected with E. coli CFT073. 23 total outer membrane antigens, in which a unique iron compound receptor is included, are reacted with antisera and were identified by mass spectrometry. These antigens comprises of proteins with known functions in UPEC pathogenesis such as, ChuA, IroN, IreA, Iha, IutA, and FliC. These all information and data elaborate that these factors are associated with virulence during UTI are directed by antibody response. We also represents that the genes encoding ChuA, IroN, hypothetical protein c2482, and IutA are significantly more prevalent among UPEC strains than among fecal-commensal E. coli isolates. Therefore we concluded that, the outer membrane antigens are identified in this study are conserved, could be reflective part for the UTI vaccine generated to induce protective immunity against UPEC infections.

Share and Cite:

Bauer, H. , Shams, H. and Bauer, R. (2013) Vaccination against urinary tract infections caused by E. coli. Advances in Bioscience and Biotechnology, 4, 487-492. doi: 10.4236/abb.2013.43A064.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Foxman, B., Barlow, R., D’Arcy, H., Gillespie, B. and Sobel, J.D. (2000) Urinary tract infection: self-reported incidence and associated costs. Annals of Epidemiology, 10, 509-515. doi:10.1016/S1047-2797(00)00072-7
[2] Gupta, K., Hooton, T.M. and Stamm, W.E. (2001) Increasing antimicrobial resistance and the management of uncomplicated community-acquired urinary tract infections. Annals of Internal Medicine, 135, 41-50.
[3] Ishikawa, K., Hayakawa, S., Miyakawa, S., Kusaka, M., Shiroki, R. and Hoshinaga, K. (2005) Survey of the susceptibility of urinary isolates to antibacterial agents in 2003. Journal of Infection and Chemotherapy, 11, 44-47. doi:10.1007/s10156-004-0356-9
[4] Mobley, H.L.T. and Warren, J.W. (1996) Urinary tract infections: Molecular pathogenesis and clinical management. ASM Press, Washington DC.
[5] Connell, I., Agace, W., Klemm, P., Schembri, M., Marild, S. and Svanborg, C. (1996) Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proceedings of the National Academy of Sciences of the United States of America, 93, 9827-9832. doi:10.1073/pnas.93.18.9827
[6] Roberts, J.A., Marklund, B.I., Ilver, D., Haslam, D., Kaack, M.B., Baskin, G., Louis, M., Mollby, R., Winberg, J. and Normark, S. (1994) The Gal(alpha 1-4)Gal-specific tip adhesin of Escherichia coli P-fimbriae is needed for pyelonephritis to occur in the normal urinary tract. Proceedings of the National Academy of Sciences of the United States of America, 91, 11889-11893. doi:10.1073/pnas.91.25.11889
[7] Goluszko, P., Moseley, S.L., Truong, L.D., Kaul, A., Williford, J.R., Selvarangan, R., Nowicki, S. and Nowicki, B. (1997) Development of experimental model of chronic pyelonephritis with Escherichia coli O75:K5:H-bearing Dr fimbriae: Mutation in the dra region prevented tubulointerstitial nephritis. Journal of Clinical Investigation, 99, 1662-1672. doi:10.1172/JCI119329
[8] van den Bosch, J.F., Emody, L. and Ketyi, I. (1982) Virulence of haemolytic strains of Escherichia coli in various animal models. FEMS Microbiology Letters, 13, 427-430. doi:10.1111/j.1574-6968.1982.tb08300.x.
[9] Welch, R.A., Dellinger, E.P., Minshew, B. and Falkow, S. (1981) Haemolysin contributes to virulence of extra-intestinal E. coli infections. Nature, 294, 665-667. doi:10.1038/294665a0
[10] Rippere-Lampe, K.E., O’Brien A.D., Conran, R. and Lockman, H.A. (2001) Mutation of the gene encoding cytotoxic necrotizing factor type 1 (cnf1) attenuates the virulence of uropathogenic Escherichia coli. Infection and Immunity, 69, 3954-3964. doi:10.1128/IAI.69.6.3954-3964.2001
[11] Lane, M.C., Lockatell, V., Monterosso, G., Lamphier, D., Weinert, J., Hebel, J.R., Johnson, D.E. and Mobley, H.L. (2005) Role of motility in the colonization of uropathogenic Escherichia coli in the urinary tract. Infection and Immunity, 73, 7644-7656. doi:10.1128/IAI.73.11.7644-7656.2005
[12] Bahrani-Mougeot, F.K., Buckles, E.L., Lockatell, C.V., Hebel, J.R., Johnson, D.E., Tang, C.M. and Donnenberg, M.S. (2002) Type 1 fimbriae and extracellular polysaccharides are preeminent uropathogenic Escherichia coli virulence determinants in the murine urinary tract. Molecular Microbiology, 45, 1079-1093. doi:10.1046/j.1365-2958.2002.03078.x
[13] Schilling, J.D., Mulvey, M.A., Vincent, C.D., Lorenz, R.G. and Hultgren, S.J. (2001) Bacterial invasion augments epithelial cytokine responses to Escherichia coli through a lipopolysaccharide-dependent mechanism. The Journal of Immunology, 166, 1148-1155.
[14] Torres, A.G., Redford, P., Welch, R.A. and Payne, S.M. (2001) TonB-dependent systems of uropathogenic Escherichia coli: Aerobactin and heme transport and TonB are required for virulence in the mouse. Infection and Immunity, 69, 6179-6185. doi:10.1128/IAI.69.10.6179-6185.2001
[15] Hagberg, L., Engberg, I., Freter, R., Lam, J., Olling, S. and Eden, C.S. (1983) Ascending, unobstructed urinary tract infection in mice caused by pyelonephritogenic Escherichia coli of human origin. Infection and Immunity, 40, 273-283.
[16] Langermann, S., Palaszynski, S., Barnhart, M., Auguste, G., Pinkner, J.S., Burlein, J., Barren, P., Koenig, S., Leath, S., Jones, C.H. and Hultgren, S.J. (1997) Prevention of mucosal Escherichia coli infection by FimH-adhesinbased systemic vaccination. Science, 276, 607-611. doi:10.1126/science.276.5312.607
[17] Langermann, S., Mollby, R., Burlein, J.E., Palaszynski, S.R., Auguste, C.G., DeFusco, A., Strouse, R., Schenerman, M.A., Hultgren, S.J., Pinkner, J.S., Winberg, J., Guldevall, L., Soderhall, M., Ishikawa, K., Normark, S. and Koenig, S. (2000) Vaccination with FimH adhesin protects cynomolgus monkeys from colonization and infection by uropathogenic Escherichia coli. The Journal of Infectious Diseases, 181, 774-778. doi:10.1086/315258
[18] Roberts, J.A., Kaack, M.B., Baskin, G., Chapman, M.R., Hunstad, D.A., Pinkner, J.S. and Hultgren, S.J. (2004) Antibody responses and protection from pyelonephritis following vaccination with purified Escherichia coli PapDG protein. Journal of Urology, 171, 1682-1685. doi:10.1097/01.ju.0000116123.05160.43
[19] O’Hanley, P., Lalonde, G. and Ji, G. (1991) Alpha-hemolysin contributes to the pathogenicity of piliated digalactoside-binding Escherichia coli in the kidney: Efficacy of an alpha-hemolysin vaccine in preventing renal injury in the BALB/c mouse model of pyelonephritis. Infection and Immunity, 59, 1153-1161.
[20] Goluszko, P., Goluszko, E., Nowicki, B., Nowicki, S., Popov, V. and Wang, H.Q. (2005) Vaccination with purified Dr fimbriae reduces mortality associated with chronic urinary tract infection due to Escherichia coli bearing Dr adhesin. Infection and Immunity, 73, 627-631. doi:10.1128/IAI.73.1.627-631.2005
[21] Russo, T.A., McFadden, C.D., Carlino-MacDonald, U.B., Beanan, J.M., Olson, R. and Wilding, G.E. (2003) The siderophore receptor IroN of extraintestinal pathogenic Escherichia coli is a potential vaccine candidate. Infection and Immunity, 71, 7164-7169. doi:10.1128/IAI.71.12.7164-7169.2003
[22] Hopkins, W.J., Elkahwaji, J., Beierle, L.M., Leverson, G.E. and Uehling, D.T. (2007) Vaginal mucosal vaccine for recurrent urinary tract infections in women: Results of a phase 2 clinical trial. Journal of Urology, 177, 1349-1353, 1591. doi:10.1016/j.juro.2006.11.093
[23] Pizza, M., Scarlato, V., Masignani, V., Giuliani, M.M., Arico, B., Comanducci, M., Jennings, G.T., Baldi, L., Bartolini, E., Capecchi, B., Galeotti, C.L., Luzzi, E., Manetti, R., Marchetti, E., Mora, M., Nuti, S., Ratti, G., Santini, L., Savino, S., Scarselli, M., Storni, E., Zuo, P., Broeker, M., Hundt, E., Knapp, B., Blair, E., Mason, T., Tettelin, H., Hood, D.W., Jeffries, A.C., Saunders, N.J., Granoff, D.M., Venter, J.C., Moxon, E.R., Grandi, G. and Rappuoli, R. (2000) Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science, 287, 1816-1820. doi:10.1126/science.287.5459.1816
[24] Prokhorova, T.A., Nielsen, P.N., Petersen, J., Kofoed, T., Crawford, J.S., Morsczeck, C., Boysen, A. and SchrotzKing, P. (2006) Novel surface polypeptides of Campylobacter jejuni as traveller’s diarrhoea vaccine candidates discovered by proteomics. Vaccine, 24, 6446-6455. doi:10.1016/j.vaccine.2006.05.085
[25] Lopez, J.E., Siems, W.F., Palmer, G.H., Brayton, K.A., McGuire, T.C., Norimine, J. and Brown, W.C. (2005) Identification of novel antigenic proteins in a complex Anaplasma marginale outer membrane immunogen by mass spectrometry and genomic mapping. Infection and Immunity, 73, 8109-8118. doi:10.1128/IAI.73.12.8109-8118.2005
[26] Chenoweth, M.R., Greene, C.E., Krause, D.C. and Gherardini, F.C. (2004) Predominant outer membrane antigens of Bartonella henselae. Infection and Immunity, 72, 30973105. doi:10.1128/IAI.72.6.3097-3105.2004
[27] Kurupati, P., The, B.K., Kumarasinghe, G. and Poh, C.L. (2006) Identification of vaccine candidate antigens of an ESBL producing Klebsiella pneumoniae clinical strain by immunoproteome analysis. Proteomics, 6, 836-844. doi:10.1002/pmic.200500214
[28] Schilling, J.D., Martin, S.M., Hung, C.S., Lorenz, R.G. and Hultgren, S.J. (2003) Toll-like receptor 4 on stromal and hematopoietic cells mediates innate resistance to uropathogenic Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 100, 4203-4208. doi:10.1073/pnas.0736473100
[29] Zhang, D., Zhang, G., Hayden, M.S., Greenblatt, M.B., Bussey, C., Flavell, R.A. and Ghosh, S. (2004) A toll-like receptor that prevents infection by uropathogenic bacteria. Science, 303, 1522-1526. doi:10.1126/science.1094351
[30] Chromek, M., Slamova, Z., Bergman, P., Kovacs, L., Podracka, L., Ehren, I., Hokfelt, T., Gudmundsson, G.H., Gallo, R.L., Agerberth, B. and Brauner, A. (2006) The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nature Medicine, 12, 636-641. doi:10.1038/nm1407
[31] Haraoka, M., Hang, L., Frendeus, B., Godaly, G., Burdick, M., Strieter, R. and Svanborg, C. (1999) Neutrophil recruitment and resistance to urinary tract infection. The Journal of Infectious Diseases, 180, 1220-1229. doi:10.1086/315006
[32] Thumbikat, P., Waltenbaugh, C., Schaeffer, A.J. and Klumpp, D.J. (2006) Antigen-specific responses accelerate bacterial clearance in the bladder. The Journal of Immunology, 176, 3080-3086.
[33] Uehling, D.T., Johnson, D.B. and Hopkins, W.J. (1999) The urinary tract response to entry of pathogens. World Journal of Urology, 17, 351-358. doi:10.1007/s003450050160
[34] Alteri, C.J. and Mobley H.L. (2007) Quantitative profile of the uropathogenic Escherichia coli outer membrane proteome during growth in human urine. Infection and Immunity, 75, 2679-2688.
[35] Hanson, M.S., Hempel, J. and Brinton Jr., C.C. (1988) Purification of the Escherichia coli type 1 pilin and minor pilus proteins and partial characterization of the adhesin protein. Journal of Bacteriology, 170, 3350-3358.
[36] Molloy, M.P., Herbert, B.R., Slade, M.B., Rabilloud, T., Nouwens, A.S., Williams, K.L. and Gooley, A.A. (2000) Proteomic analysis of the Escherichia coli outer membrane. European Journal of Biochemistry, 267, 2871-2881. doi:10.1046/j.1432-1327.2000.01296.x
[37] Hopkins, W.J. and Uehling, D.T. (1995) Resolution time of Escherichia coli cystitis is correlated with levels of preinfection antibody to the infecting Escherichia coli strain. Urology, 45, 42-46. doi:10.1016/S0090-4295(95)96444-4
[38] Russo, T.A., McFadden, C.D., Carlino-MacDonald, U.B., Beanan, J.M., Barnard, T.J. and Johnson, J.R. (2002) IroN functions as a siderophore receptor and is an urovirulence factor in an extraintestinal pathogenic isolate of Escherichia coli. Infection and Immunity, 70, 7156-7160. doi:10.1128/IAI.70.12.7156-7160.2002
[39] Russo, T.A., Carlino, U.B. and Johnson, J.R. (2001) Identification of a new iron-regulated virulence gene, ireA, in an extra intestinal pathogenic isolate of Escherichia coli. Infection and Immunity, 69, 6209-6216. doi:10.1128/IAI.69.10.6209-6216.2001
[40] Johnson, J.R., Jelacic, S., Schoening, L.M., Clabots, C., Shaikh, N., Mobley, H.L. and Tarr, P.I. (2005) The IrgA homologue adhesin Iha is anEscherichia coli virulence factor in murine urinary tract infection. Infection and Immunity, 73, 965-971. doi:10.1128/IAI.73.2.965-971.2005
[41] Lane, M.C., Lockatell, V., Monterosso, G., Lamphier, D., Weinert, J., Hebel, J.R., Johnson, D.E. and Mobley, H.L. (2005) Role of motility in the colonization of uropathogenic Escherichia coli in the urinary tract. Infection and Immunity, 3, 7644-7656. doi:10.1128/IAI.73.11.7644-7656.2005

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.