The change of HERS cell number and gene expression profile by occlusion during root development in rat molars

Abstract

Occlusion is commenced by contact of a tooth with an opposing tooth and is the mechanical force working against the periodontal ligament (PDL). Our recent study indicated that occlusion regulated tooth root elongation occurs during root development in rat molars. Using a non-occlusal model established to directly examine the effects of the absence of occlusion in developing first molars of upper jaw, histological analysis was performed to count the number of HERS cells, with Microarray used to analyse gene expression profiles. HERS cell numbers in normal molars decreased significantly more than those in experimental molars. In microarray data, a total of 59 genes showed significant differences (fold change > 2.0). Expressions of 55 genes in the experimental molars, which included PLAP-1/asporin and periostin, were significantly decreased than those in normal molars. These data indicate that occlusion during root development leads to a decrease in the number of HERS cells, and that the aforementioned genes may play an essential role in normal root formation.

Share and Cite:

Nakasone, N. , Ishida, K. , Yokoyama, T. , Okada, M. , Komatsu, Y. and Yoshie, H. (2013) The change of HERS cell number and gene expression profile by occlusion during root development in rat molars. Open Journal of Stomatology, 3, 8-14. doi: 10.4236/ojst.2013.31002.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Nakasone, N. and Yoshie, H. (2011) Occlusion regulates tooth root elongation during root development in rat molars. European Journal of Oral Sciences, 119, 418-426. doi:10.1111/j.1600-0722.2011.00856.x
[2] Nakatomi, M., Morita, I., Eto, K., et al. (2006) Sonic Hedgehog signaling is important in tooth root development. Journal of Dental Research, 85, 427-431. doi:10.1177/154405910608500506
[3] Hayano, S., Kurosaka, H., Yanagita, T., et al. (2012) Roles of Heparan Sulfate Sulfation in Dentinogenesis. Journal of Biological Chemistry, 15, 12217-12229. doi:10.1074/jbc.M111.332924
[4] Luan, X., Ito, Y. and Diekwisch, T.G. (2006) Evolution and development of Hertwig’s epithelial root sheath. Developmental Dynamics, 235, 1167-1180. doi:10.1002/dvdy.20674
[5] Steele-Perkins, G., Butz, K.G., Lyons, G.E., et al. (2003) Essential role for NFI-C/CTF transcription-replication factor in tooth root development. Molecular and Cellular Biology, 23, 1075-1084. doi:10.1128/MCB.23.3.1075-1084.2003
[6] Rios, H., Koushik, S.V., Wang, H., et al. (2005) Periostin null mice exhibit dwarfism, incisor enamel defects, and an earlyonset periodontal disease-like phenotype. Molecular and Cellular Biology, 25, 11131-11144. doi:10.1128/MCB.25.24.11131-11144.2005
[7] Yamamoto, H., Cho, S.W., Kim, E.J., et al. (2004) Developmental properties of the Hertwig’s epithelial root sheath in mice. Journal of Dental Research, 83, 688-692. doi:10.1177/154405910408300906
[8] Tummers, M., Yamashiro, T. and Thesleff, I. (2007) Modulation of epithelial cell fate of root in vitro. Journal of Dental Research, 86, 1063-1067. doi:10.1177/154405910708601108
[9] Huang, X., Bringas, J.R.P., Slavkin, H.C., et al. (2009) Fate of HERS during tooth root development. Developmental Biology, 334, 22-30. doi:10.1016/j.ydbio.2009.06.034
[10] Todd, R. and Wong, D.T. (2002) DNA hybridization arrays for gene expression analysis of human oral cancer. Journal of Dental Research, 81, 89-97. doi:10.1177/154405910208100202
[11] Thornton, S., Sowders, D., Aronow, B., et al. (2002) DNA microarray analysis reveals novel gene expression profiles in collagen-induced arthritis. Clinical Immunology, 105, 155-168. doi:10.1006/clim.2002.5227
[12] Colangelo, V., Schurr, J., Ball, M.J., et al. (2002) Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: Transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and proinflammatory signaling. Journal of Neuroscience Research, 70, 462-473. doi:10.1002/jnr.10351
[13] Cláudia, M.C.C., Silvia, L., Ines, N.N., et al. (2011) Caspaseexpression in oral Squamous cell carcinoma. Head and Neck, 33, 1191-1198. doi:10.1002/hed.21602
[14] Abe, D., Kubota, T., Morozumi, T., et al. (2011) Altered gene expression in leukocyte transendothelial migration and cell communication pathways in periodontitis-affected gingival tissues. Journal of Periodontal Reseach, 46, 345-353. doi:10.1111/j.1600-0765.2011.01349.x
[15] Shimizu, T., Kubota, T., Nakasone, N., et al. (2011) Microarray and quantitative RT-PCR analyses in calcium-channel blockers induced gingival overgrowth tissues of periodontitis patients. Archives of Oral Biology, 56, 277- 284. doi:10.1016/j.archoralbio.2010.10.002
[16] Sasaki, H., Muramatsu, T., Kwon, H.J., et al. (2010) Down-regulated genes in mouse dental papillae and pulp. Journal of Dental Research, 89, 679-683. doi:10.1177/0022034510366844
[17] Kim, K.M., Lim, J., Choi, Y.A., et al. (2012) Gene expression profiling of oral epithelium during tooth development. Archives of Oral Biology, 57, 1100-1107. doi:10.1016/j.archoralbio.2012.02.019
[18] Landin, M.A., Shabestari, M., Babaie, E., et al. (2012) Gene expression profiling during murine tooth development. Frontiers in Genetics, 31, 1-12.
[19] Kaneko, H., Hashimoto, S., Enokiyo, Y., et al. (1999) Cell proliferation and death of Hertwig’s epithelial root sheath in the rat. Cell and Tissue Research, 298, 95-103. doi:10.1007/s004419900061
[20] Levy, G.G. and Mailland, M.L. (1982) Histologic study of the effects of occlusal hypofunction following antagonist tooth extraction in the rat. Journal of Periodontology, 51, 393-399. doi:10.1902/jop.1980.51.7.393
[21] Cohn, S.A. (1965) Disuse atrophy of the periodontium in mice. Archives of Oral Biology, 10, 909-919. doi:10.1016/0003-9969(65)90084-1
[22] Cohn, S.A. (1966) Disuse atrophy of the periodontium in mice following partial loss of function. Archives of Oral Biology, 11, 95-105. doi:10.1016/0003-9969(66)90120-8
[23] Horiuchi, K., Amizuka, N., Takeshita, S., et al. (1999) Identification and Characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factorβ. Journal of Bone and Mineral Research, 14, 1239-1249. doi:10.1359/jbmr.1999.14.7.1239
[24] Rios, H.F., Ma, D., Xie, Y., et al. (2008) Periostin is essential for the integrity and function of the periodontal ligament during occlusal loading in mice. Journal of Periodontology, 79, 1480-1490. doi:10.1902/jop.2008.070624
[25] Yamada, S., Tomoeda, M., Ozawa, Y., et al. (2007) PLAP-1/Asporin, a novel negative regulator of periodontal ligament mineralization. Journal of Biological Chemistry, 282, 23070-23080. doi:10.1074/jbc.M611181200

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.