Seco-limonoid 11α,19β-dihydroxy-7-acetoxy-7- deoxoichangin promotes the resolution of Leishmania panamensis infection

Abstract

The high morbidity generated by the infection caused by parasites of the genus Leishmania, make of this infection into one of the vector-borne infectious diseases most relevant worldwide, which added to the fact that the drugs used for its treatment are far from be optimal and considering that prophylactic approaches (such as the development of a vaccine) still seems far from being achieved, make of the search for new therapeutic alternatives for safe and effective treatment of this disease one of the most accurate approaches to the control of this disease. In this study we evaluated the antileishmanial and immunomodu- latory activity of the compound 11α,19β-dihydroxy- 7-acetoxy-7-deoxoichangin (a seco-limonid molecule) through: 1) evaluation of its cytotoxicity over promastigotes and axenic amastigotes of L. (V) panamensis, 2) determination of its ability to induce the control of in vitro infection, using infected murine cells (J774.2) and human dendritic cells (hDCs), 3) quantifying the levels of pro-inflammatory cytokines, (iv) evaluating the expression of cell markers associated with hDCs maturation, and (v) determinating the production of nitric oxide free radicals (NO). In this regard, this seco-limonoid exhibited an antileishmanial activity represented in the reduction of in vitro infection in J774.2 cells and hDCs, with a EC50 of 7.9 μM (4.48 μg/mL) and 25.5 μM (14.39 μg/mL), respectively, and additionally, we observed an increase on the production of IL-12p70, TNF-α and NO, as also, in the number of hDCs HLA-DR-positive in treated infected hDCs. These findings suggest that anti-lei- shmanial activity of this compound could be associated with the potential “reactivation” of phagocytic cell that is “paralyzed” by the infection, generating an immune phenotype associated with protection.

Share and Cite:

Granados-Falla, D. , Coy-Barrera, C. , Cuca, L. and Delgado, G. (2013) Seco-limonoid 11α,19β-dihydroxy-7-acetoxy-7- deoxoichangin promotes the resolution of Leishmania panamensis infection. Advances in Bioscience and Biotechnology, 4, 304-315. doi: 10.4236/abb.2013.42A041.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] WHO (2010) Control of the leishmaniases. Report of a meeting of the WHO Expert Committee on the Control of Leishmaniases, World Health Organization, Geneva.
[2] Desjeux, P. (2004) Leishmaniasis: Current situation and new perspectives. Comparative Immunology, Microbiology & Infectious Diseases, 27, 305-318. doi:10.1016/j.cimid.2004.03.004
[3] WHO (2004) TDR—Tropical disease research. World Health Organization, Geneva.
[4] Mitropoulos, P., Konidas, P. and Durkin-Konidas, M. (2010) New World cutaneous leishmaniasis: Updated review of current and future diagnosis and treatment. Journal of the American Academy of Dermatology, 63, 309322. doi:10.1016/j.jaad.2009.06.088
[5] Santos, D.O., Coutinho, C.E., Madeira, M.F., Bottino, C.G., Vieira, R.T., Nascimento, S.B., Bernardino, A., Bourguignon, S.C., Corte-Real, S., Pinho, R.T., Rodrigues, C.R. and Castro, H.C. (2008) Leishmaniasis treatment—A challenge that remains: A review. Parasitology Research, 103, 1-10. doi:10.1007/s00436-008-0943-2
[6] Croft, S.L., Sundar, S. and Fairlamb, A.H. (2006) Drug resistance in leishmaniasis. Clinical Microbiology Reviews, 19, 111-126. doi:10.1128/CMR.19.1.111-126.2006
[7] Croft, S.L., Seifert, K. and Yardley, V. (2006) Current scenario of drug development for leishmaniasis. Indian Journal of Medical Research, 123, 399-410.
[8] Frezard, F., Demicheli, C. and Ribeiro, R.R. (2009) Pentavalent antimonials: New perspectives for old drugs. Molecules, 14, 2317-2336. doi:10.3390/molecules14072317
[9] Haldar, A.K., Sen, P. and Roy, S. (2011) Use of antimony in the treatment of leishmaniasis: Current status and future directions. Molecular Biology International, 2011, 1-23. doi:10.4061/2011/571242
[10] Bray, P.G., Barrett, M.P., Ward, S.A. and de Koning, H.P. (2003) Pentamidine uptake and resistance in pathogenic protozoa: Past, present and future. Trends in Parasitology, 19, 232-239. doi:10.1016/S1471-4922(03)00069-2
[11] Croft, S.L., Barrett, M.P. and Urbina, J.A. (2005) Chemotherapy of trypanosomiases and leishmaniasis. Trends in Parasitology, 21, 508-512. doi:10.1016/j.pt.2005.08.026
[12] Paila, Y.D., Saha, B. and Chattopadhyay, (2010) A. Amphotericin B inhibits entry of Leishmania donovani into primary macrophages. Biochemical and Biophysical Research Communications, 399, 429-433. doi:10.1016/j.bbrc.2010.07.099
[13] Newman, D.J. and Cragg, G.M. (2007) Natural products as sources of new drugs over the last 25 years. Journal of Natural Products, 70, 461-477. doi:10.1021/np068054v
[14] Harvey, A.L. (2008) Natural products in drug discovery. Drug Discovery Today, 13, 894-901. doi:10.1016/j.drudis.2008.07.004
[15] Rocha, L.G., Almeida, J.R., Macedo, R.O. and BarbosaFilho, J.M. (2005) A review of natural products with antileishmanial activity. Phytomedicine, 12, 514-535. doi:10.1016/j.phymed.2003.10.006
[16] Mishra, B.B., Singh, R.K., Srivastava, A., Tripathi, V.J. and Tiwari, V.K. (2009) Fighting against leishmaniasis: search of alkaloids as future true potential anti-leishmanial agents. Mini Reviews in Medicinal Chemistry, 9, 107123. doi:10.2174/138955709787001758
[17] de Carvalho, P.B. and Ferreira, E.I. (2001) Leishmaniasis phytotherapy. Nature’s leadership against an ancient disease. Fitoterapia, 72, 599-618. doi:10.1016/S0367-326X(01)00301-X
[18] Coy Barrera, C.A., Coy Barrera, E.D., Granados Falla, D.S., Delgado Murcia, G. and Cuca Suarez, L.E. (2011) Seco-limonoids and quinoline alkaloids from Raputia heptaphylla and their antileishmanial activity. Chemical & Pharmaceutical Bulletin, 59, 855-859. doi:10.1248/cpb.59.855
[19] Handman, E. (1999) Cell biology of Leishmania. Advances in Parasitology, 44, 1-39. doi:10.1016/S0065-308X(08)60229-8
[20] Basu, M.K. and Ray, M. (2005) Macrophage and Leishmania: An unacceptable coexistence. Critical Reviews in Microbiology, 31, 145-154. doi:10.1080/10408410591005101
[21] Rosas, L.V. (2005) Phytochemistry, chemosystematic and searching of new antichagasic and antileishmaniasis drugs: Study of Raputia praetermissa (Rutaceae). Tese (Doutorado), Universidade Federal de S?o Carlos, S?o Carlos.
[22] Pulido, S.A., Munoz, D.L., Restrepo, A.M., Mesa, C.V., Alzate, J.F., Velez, I.D. and Robledo, S.M. (2012) Improvement of the green fluorescent protein reporter system in Leishmania spp. for the in vitro and in vivo screening of antileishmanial drugs. Acta Tropica, 122, 36-45. doi:10.1016/j.actatropica.2011.11.015
[23] Strober, W. (1997) Trypan blue exclusion test of cell viability. In: Coligan, J.E., Krusbeek, A.M., Margulies, D.H., Shevach, E.M. and Strober, W., Eds, Current Protocols in Immunology, John Wiley & Sons, Inc., New York.
[24] Buckner, F.S. and Wilson, A.J. (2005) Colorimetric assay for screening compounds against Leishmania amastigotes grown in macrophages. American Journal of Tropical Medicine and Hygiene, 72, 600-605.
[25] O'Brien, J., Wilson, I., Orton, T. and Pognan, F. (2000) Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. European Journal of Biochemistry, 267, 5421-5426. doi:10.1046/j.1432-1327.2000.01606.x
[26] Chakravarty, J. and Sundar, S. (2010) Drug resistance in leishmaniasis. Journal of Global Infectious Diseases, 2, 167-176. doi:10.4103/0974-777X.62887
[27] Bogdan, C. and Rollinghoff, M. (1999) How do protozoan parasites survive inside macrophages? Parasitology Today, 15, 22-28. doi:10.1016/S0169-4758(98)01362-3
[28] Burchmore, R.J. and Barrett, M.P. (2001) Life in vacuoles--nutrient acquisition by Leishmania amastigotes. International Journal for Parasitology, 31, 1311-1320.
[29] Mougneau, E., Bihl, F. and Glaichenhaus, N. (2011) Cell biology and immunology of Leishmania. Immunological Reviews, 240, 286-296. doi:10.1111/j.1600-065X.2010.00983.x
[30] El-On, J. (2009) Current status and perspectives of the immunotherapy of leishmaniasis. Israel Medical Association Journal, 11, 623-628.
[31] Mansueto, P., Vitale, G., Di Lorenzo, G., Rini, G.B., Mansueto, S. and Cillari, E. (2007) Immunopathology of leishmaniasis: an update. International Journal of Immunopathology and Pharmacology, 20, 435-445.
[32] Saha, P., Mukhopadhyay, D. and Chatterjee, M. (2011) Immunomodulation by chemotherapeutic agents against leishmaniasis. International Immunopharmacology, 11, 1668-1679. doi:10.1016/j.intimp.2011.08.002
[33] Vermeersch, M., da Luz, R.I., Tote, K., Timmermans, J.P., Cos, P. and Maes, L. (2009) In vitro susceptibilities of Leishmania donovani promastigote and amastigote stages to antileishmanial reference drugs: practical relevance of stage-specific differences. Antimicrobial Agents and Chemotherapy, 53, 3855-3859. doi:10.1128/AAC.00548-09
[34] De Muylder, G., Ang, K.K., Chen, S., Arkin, M.R., Engel, J.C. and McKerrow, J.H. (2011) A screen against Leishmania intracellular amastigotes: Comparison to a promastigote screen and identification of a host cell-specific hit. PLOS Neglected Tropical Diseases, 5, e1253. doi:10.1371/journal.pntd.0001253
[35] Shukla, A.K., Singh, B.K., Patra, S. and Dubey, V.K. (2010) Rational approaches for drug designing against leishmaniasis. Applied Biochemistry and Biotechnology, 160, 2208-2218. doi:10.1007/s12010-009-8764-z

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.