Direct Preparation of Hydrogen and Carbon Nanotubes by Microwave Plasma Decomposition of Methane over Fe/Si Activated by Biased Hydrogen Plasma

Abstract

Methane was decomposed to hydrogen and carbon nanotubes (CNTs) by microwave plasma, using Fe/Si catalyst activated by biased (150 V) hydrogen plasma for various treatment times. Upon exposure to biased hydrogen plasma, the catalyst surface becomes lumpy within 1 min, coheres between 5 and 10 min and forms particles after 20 min. The methane conversion increased up to 93% over the treatment time of 5 min. The hydrogen yield showed as similar tendency as the methane conversion and kept 83% at treatment time of 5 min. The treatment time up to 1 min increased the amount of deposited carbon, and after treatment time of 5 min it dropped; then again after treatment time of 20 min, it increased to reach a maximum value of 22 gc/gcat. Deposited carbon was found to be consisted of carbon nanotubes. It grew vertically on the catalyst surface and reached a maximum length of 30.7 nm after treatment time of 10 min. Multiple types of CNTs were present, and the CNT diameters decreased with increasing plasma treatment time.

Share and Cite:

K. Konno, K. Onoe, Y. Takiguchi and T. Yamaguchi, "Direct Preparation of Hydrogen and Carbon Nanotubes by Microwave Plasma Decomposition of Methane over Fe/Si Activated by Biased Hydrogen Plasma," Green and Sustainable Chemistry, Vol. 3 No. 1, 2013, pp. 19-25. doi: 10.4236/gsc.2013.31004.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J. R. Fincke, R. P. Snderson, T. A. Hyde and B. A. Detering, “Plasma Pyrolysis of Methane to Hydrogen and Carbon Black,” Industrial and Engineering Chemistry Research, Vol. 41, No. 6, 2002, pp. 1425-1435. doi:10.1021/ie010722e
[2] J. L. Pinilla, I. Suelve, M. J. Lazaro, R. Moliner and J. M. Palacios, “Parametric Study of the Decomposition of Methane Using a NiCu/Al2O3 Catalyst in a Fluidized Bed Reactor,” International Journal of Hydrogen Energy, Vol. 35, No. 18, 2010, pp. 9801-9809. doi:10.1016/j.ijhydene.2009.10.008
[3] D. Li, J. Chen and Y. Li, “Evidence of Composition Deviation of Metal Particles of a Ni-Cu/Al2O3 Catalyst during Methane Decomposition to Cox-Free Hydrogen,” International Journal of Hydrogen Energy, Vol. 34, No. 1, 2009, pp. 299-307. doi:10.1016/j.ijhydene.2008.09.106
[4] A. Venugopal, S. Naveen Kumar, J. Ashok, D. Hari Prasad, V. Durga Kumari, K. B. S. Prasad and M. Subrahmanyam, “Hydrogen Production by Catalytic Decomposition of Methane over Ni/SiO2,” International Journal of Hydrogen Energy, Vol. 32, No. 12, 2007, pp. 1782-1788. doi:10.1016/j.ijhydene.2007.01.007
[5] Y. Echegoyen, I. Suelves, M.J. Lazaro, R. Moliner and J. M. Palacios, “Hydrogen Production by Thermocatalytic Decomposition of Methane over Ni-Al and Ni-Cu-Al Catalysts: Effect of Calcination Temperature,” Journal of Power Sources, Vol. 169, No. 1, 2007, pp. 150-157. doi:10.1016/j.jpowsour.2007.01.058
[6] I. Suelves, M. J. Lazaro, R. Moliner, B. M. Corbella and J. M. Palacios, “Hydrogen Production by Thermo Catalytic Decomposition of Methane on Ni-Based Catalysts: Influence of Operation Conditions on Catalyst Deactivation and Carbon Characteristics,” International Journal of Hydrogen Energy, Vol. 30, No. 15, 2005, pp. 1555-1567. doi:10.1016/j.ijhydene.2004.10.006
[7] M. A. Ermakova, D. Y. Ermakov and G. G. Kuvshinov, “Effective Catalysts for Direct Cracking of Methane to Produce Hydrogen and Filamentous Carbon Part I. Nickel catalysts,” Applied Catalysisi A: General, Vol. 201, No. 1, 2000, pp. 61-70. doi:10.1016/S0926-860X(00)00433-6
[8] A. F. Cunha, J. J. M. Orfao and J. L. Figueiredo, “Methane Decomposition on Fe-Cu Raney-Type Catalysts,” Fuel Processing Technology, Vol. 90, No. 10, 2009, pp. 1234-1240. doi:10.1016/j.fuproc.2009.06.004
[9] A. Konieczny, K. Mondal, T. Wiltowski and P. Dydo, “Catalyst Development for Thermocatalytic Decomposition of Methane to Hydrogen. International Journal of Hydrogen,” Energy, Vol. 33, No. 1, 2008, pp. 264-272.
[10] N. Shah, D. Panjala and G. P. Huffman, “Hydrogen Production by Catalytic Decomposition of Methane,” Energy & Fuels, Vol. 15, No. 6, 2001, pp. 1528-1534. doi:10.1021/ef0101964
[11] K. Onoe, A. Fujie, T. Yamaguchi and Y. Hatano, “Selective Synthesis of Acetylene from Methane by Microwave Plasma Reaction,” Fuel, Vol. 76, No. 3, 1997, pp. 281-281. doi:10.1016/S0016-2361(96)00228-1
[12] C. F. Chen, C. L. Lin and C. M. Wang, “Field Emission Properties of Verticall Allgned Carbon Nanotubes Grown on Bias-Enhanced Hydrogen Plasma Pretratment Cr Film,” Thin Solid Films, Vol. 444, No. 1-2, 2003, pp. 64-69. doi:10.1016/S0040-6090(03)01022-8
[13] W. P. Wang, H. C. Wen, S. R. Jian, J. Y. Juang, Y. S. Lai, C. H. Tsai, W. F. Wu, K. T. Chen and C. P. Chou, “The Effects of Hydrogen Plasma Pretreatment on the Formation of Vertically Aligned Carbon Nanotubes,” Applied Surface Science, Vol. 253, No. 23, 2007, pp. 9248-9253. doi:10.1016/j.apsusc.2007.05.060
[14] J. H. Choi, T. Y. Lee, S. H. Choi, J. H. Han, J. B. Yoo, C. Y. Park, T. Jung, S. G. Yu, W. Yi, I. T. Han and J. M. Kim, “Chontrol of Carbon Nanotubes Density through Ni Nanoparticle Formation Using the Thermal and NH3 Plasma Treatment,” Diamond Related Materials, Vol. 12, No. 3-7, 2003, pp. 794-798.
[15] G. Koyano, H. Watanabe, T. Okuhara, M. Misono, A. Nishijima, N. Matsubayashi and M. Imamura, “Highly Activate Supported Cobalt Oxide Catalysts Prepared by Low Temperature Oxgen Plasma,” Sekiyu Gakkaishi, Vol. 36, No. 5, 1993, pp. 402-405. doi:10.1627/jpi1958.36.402
[16] Y. C. Choi, Y. M. Shin, Y. H. Lee, B. S. Lee, G. S. Park, W. B. Choi, N. S. Lee and J. M. Kin, “Controlling the Diameter, Growth Rate, and Density of vertically Aligned Carbon Nanotubes Synthesized by Microwave Plasma- Enhanced Chemical Vapor Deposition,” Applied Physics Letters, Vol. 76, No. 7, 2000, pp. 2367-2369. doi:10.1063/1.126348
[17] J. Y. Lee and B. S. Lee, “Nitrogen Induced Structure Control of Vertically Aligned Carbon Nanotubes Synthesized by Microwave Plasma Enhanced Chemical Vapor Deposition,” Thin Solid Film, Vol. 418, No. 2, 2002, pp. 85-88. doi:10.1016/S0040-6090(02)00788-5
[18] M. Taniguchi, H. Nagao, M. Hiramatsu, Y. Ando and M. Hori, “Preparation of Dense Carbon Nanotube Film Using Microwave Plasma-Enhanceed Chemical Vapor Deposition,” Diamond Related Materials, Vol. 14, No. 3-7, 2005, pp. 855-858.
[19] H. Sato, H. Takegawa and Y. Saito, “Veticall Aligned Carbon Nanotubes Grown by Plasma Enhanced Chemical Vapor Deposition,” Journal of Vacuum Science and Technology B, Vol. 21, No. 6, 2003, pp. 2564-2568. doi:10.1116/1.1627332
[20] C. B. Bower, O. Zhou, W. Zhu, D. J. Werder and J. Sungho, “Nucleation and Growth of Carbon Nanotubes by Microwave Plasma Chemical Vapor Deposition,” Applied Physics Letters, Vol. 77, No. 17, 2000, pp. 12767-12769. doi:10.1063/1.1319529
[21] K. Konno, K. Onoe and T. Yamaguchi, “Production of Carbon Nanotubes from Methane by Microwave Plasma—Examination of Nickel Catalysis,” Proceeding of 10th Asia Pacific Confederation of Chemical Engineering, Kitakyusyu, 17-21 October 2004, pp. 705-714.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.