Cigarette Smoke Induces Apoptosis by Activation of Caspase-3 in Isolated Fetal Rat Lung Type II Alveolar Ep-ithelial Cells in Vitro

Abstract

Smoking during pregnancy is a major source of fetal exposure to numerous harmful agents present in tobacco smoke. Lung development involves complex biochemical processes resulting in dramatic changes which continue even after birth. In addition to type I cells which form the blood-air barrier, type II alveolar epithelial (AE) cells have important and diverse functions related to immunological protection and stabilization of the alveolus through synthesis and secretion of the pulmonary surfactant. Apoptosis or programmed cells death is an important physiological process during lung embryogenesis and for the proper maintenance of homeostasis. Caspases are proteases that play important roles in regulating apoptosis. Caspase-3 is the key executioner caspase in the cascade of events leading to cell death by apoptosis. We explored the hypothesis that cigarette smoke extract (CSE) induces apoptosis in fetal rat lung type II AE cells by activation of caspase-3. To analyze these factors, isolated fetal rat lung type II AE cells were used. The cells were exposed to different concentrations of CSE (5%, 10% or 15%) (v/v) for 60 min. The results of the present study showed that CSE induced apoptosis in fetal rat lung type II AE cells with a significant increase (p < 0.05) in caspase-3 activity and decrease in cell proliferation at CSE concentrations of 10% and 15% (v/v). These observations indicate that cigarette smoke extract induces apoptosis by activation of caspase-3 in fetal rat lung type II AE cells in a dose-dependent manner and may potentially alter the regulated development of the lung and the appearance of the surfactant-producing type II alveolar cells which are critical for the establishment of adequate gas exchange at birth.

Share and Cite:

A. Ahmed, J. Thliveris, A. Shaw, M. Sowa, J. Gilchrist and J. Scott, "Cigarette Smoke Induces Apoptosis by Activation of Caspase-3 in Isolated Fetal Rat Lung Type II Alveolar Ep-ithelial Cells in Vitro," Open Journal of Respiratory Diseases, Vol. 3 No. 1, 2013, pp. 4-12. doi: 10.4236/ojrd.2013.31002.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J. Stocks and C. Dezateux, “The Effect of Parental Smoking on Lung Function and Development during Infancy,” Respirology, Vol. 8, No. 3, 2003, pp. 266-285. doi:10.1046/j.1440-1843.2003.00478.x
[2] J. M. Roquer, J. Figueras, F. Botet and R. Jimenez, “Influence on Fetal Growth of Exposure to Tobacco Smoke during Pregnancy,” Acta Paediatrica, Vol. 84, No. 2, 1995, pp. 118-121. doi:10.1111/j.1651-2227.1995.tb13592.x
[3] J. R. DiFranza, C. A. Aligne and M. Weitzman, “Prenatal and Postnatal Environmental Tobacco Smoke Exposure and Children’s Health,” Pediatrics, Vol. 113, No. S4, 2004, pp. 1007-1015.
[4] M. Selman and A. Pardo, “Role of Epithelial Cells in Idiopathic Pulmonary Fibrosis: From Innocent Targets to Serial Killers,” Proceedings of American Thoracic Society, Vol. 3, No. 4, 2006, pp. 364-372. doi:10.1513/pats.200601-003TK
[5] D. Wang, D. L. Haviland, A. R. Burns, E. Zsigmond and R. A. Wetsel, “A Pure Population of Lung Alveolar Epithelial Type II Cells Derived from Human Embryonic Stem Cells,” Proceedings of the National Academy of Sciencesof United States of America, Vol. 104, No. 11, 2007, pp. 4449-4454. doi:10.1073/pnas.0700052104
[6] A. E. Bishop, “Pulmonary Epithelial Stem Cells,” Cell Proliferation, Vol. 37, No. 1, 2004, pp. 89-96. doi:10.1111/j.1365-2184.2004.00302.x
[7] Z. Borok and E. D. Crandall, “More Life for a ‘Terminal’ Cell,” American Journal of Physiology—Lung Cellular and Molecular Physiology, Vol. 297, No. 6, 2009, pp. L1042-L1044. doi:10.1152/ajplung.00355.2009
[8] C. Haanen and I. Vermes, “Apoptosis: Programmed Cell Death in Fetal Development,” European Journal of Obstetrics & Gynecology and Reproductive Biology, Vol. 64, No. 1, 1996, pp. 129-133. doi:10.1016/0301-2115(95)02261-9
[9] S. Elmore, “Apoptosis: A Review of Programmed Cell Death,” Toxicologic Pathology, Vol. 35, No. 4, 2007, pp. 495-516. doi:10.1080/01926230701320337
[10] C. Kohler, S. Orrenius and B. Zhivotovsky, “Evaluation of Caspase Activity in Apoptotic Cells,” Journal of Immunological Methods, Vol. 265, No. 1-2, 2002, pp. 97-110. doi:10.1016/S0022-1759(02)00073-X
[11] P. G. Ekert, J. Silke and D. L. Vaux, “Caspase Inhibitors,” Cell Death & Differentiation, Vol. 6, No. 11, 1999, pp. 1081-1086. doi:10.1038/sj.cdd.4400594
[12] D. W. Nicholson and N. A. Thornberry, “Caspases: Killer Proteases,” Trends in Biochemical Sciences, Vol. 22, No. 8, 1997, pp. 299-306. doi:10.1016/S0968-0004(97)01085-2
[13] D. Chandra and D. G. Tang, “Mitochondrially Localized Active Caspase-9 and Caspase-3 Result Mostly from Translocation from the Cytosol and Partly from CaspaseMediated Activation in the Organelle. Lack of Evidence for Apaf-1-Mediated Procaspase-9 Activation in the Mitochondria,” The Journal of Biological Chemistry, Vol. 278, No. 19, 2003, pp. 17408-17420. doi:10.1074/jbc.M300750200
[14] B. Fadeel, S. Orrenius and B. Zhivotovsky, “The Most Unkindest Cut of All: On the Multiple Roles of Mammalian Caspases,” Leukemia, Vol. 14, No. 8, 2000, pp. 1514-1525. doi:10.1038/sj.leu.2401871
[15] N. A. Thornberry and Y. Lazebnik, “Caspases: Enemies within,” Science, Vol. 281, No. 5381, 1998, pp. 13121316. doi:10.1126/science.281.5381.1312
[16] C. Wongtrakool and J. Roman, “Apoptosis of Mesenchymal Cells during the Pseudoglandular Stage of Lung Development Affects Branching Morphogenesis,” Experimental Lung Research, Vol. 34, No. 8, 2008, pp. 481-499. doi:10.1080/01902140802271842
[17] A. Janoff and H. Carp, “Possible Mechanisms of Emphysema in Smokers: Cigarette Smoke Condensate Suppresses Protease Inhibition in Vitro,” American Review Respiratory Disease, Vol. 116, No. 1, 1977, pp. 65-72.
[18] A. R. Tabassian, E. S. Nylen, A. E. Giron, R. H. Snider, M. M. Cassidy and K. L. Becker, “Evidence for Cigarette Smoke-Induced Calcitonin Secretion from Lungs of Man and Hamster,” Life Sciences, Vol. 42, No. 23, 1988, pp. 2323-2329. doi:10.1016/0024-3205(88)90185-3
[19] J. E. Scott, S. Y. Yang, E. Stanik and J. E. Anderson, “Influence of Strain on [3H]Thymidine Incorporation, Surfactant-Related Phospholipid Synthesis, and Camp Levels in Fetal Type II Alveolar Cells,” American Journal of Respiratory Cell and Molecular Biology, Vol. 8, No. 3, 1993, pp. 258-265.
[20] J. J. Batenburg, C. J. Otto-Verberne, A. A. Ten Have-Opbroek and W. Klazinga, “Isolation of Alveolar Type II Cells from Fetal Rat Lung by Differential Adherence in Monolayer Culture,” Biochimica et Biophysica Acta, Vol. 960, No. 3, 1988, pp. 441-453. doi:10.1016/0005-2760(88)90053-7
[21] L. Ott, “An Introduction to Statistical Methods and Data Analysis,” Duxbury Press, Pacific Grove, 1977.
[22] H. Fehrenbach, “Alveolar Epithelial Type II Cell: Defender of the Alveolus Revisited,” Respiratory Research, Vol. 2, No. 1, 2001, pp. 33-46. doi:10.1186/rr36
[23] Y. Hoshino, T. Mio, S. Nagai, H. Miki, I. Ito and T. Izumi, “Cytotoxic Effects of Cigarette Smoke Extract on an Alveolar Type II Cell-Derived Cell Line,” American Journal of Physiology—Lung Cellular and Molecular Physiology, Vol. 281, No. 2, 2001, pp. L509-L516.
[24] K. Aoshiba, M. Koinuma, N. Yokohori and A. Nagai, “Immunohistochemical Evaluation of Oxidative Stress in Murine Lungs after Cigarette Smoke Exposure,” Inhalation Toxicology, Vol. 15, No. 10, 2003, pp. 1029-1038.
[25] W. A. Pryor, “Cigarette Smoke Radicals and the Role of Free Radicals in Chemical Carcinogenicity,” Environmental Health Perspectives, Vol. 105, No. S4, 1997, pp. 875-882.
[26] J. A. Ambrose and R. S. Barua, “The Pathophysiology of Cigarette Smoking and Cardiovascular Disease: An Update,” Journal of the American College of Cardiology, Vol. 43, No. 10, 2004, pp. 1731-1737. doi:10.1016/j.jacc.2003.12.047
[27] S. Joshi and S. Kotecha, “Lung Growth and Development,” Early Human Development, Vol. 83, No. 12, 2007, pp. 789-794. doi:10.1016/j.earlhumdev.2007.09.007
[28] R. J. Rona, M. C. Gulliford and S. Chinn, “Effects of Prematurity and Intrauterine Growth on Respiratory Health and Lung Function in Childhood,” British Medical Journal, Vol. 306, No. 6881, 1993, pp. 817-820. doi:10.1136/bmj.306.6881.817
[29] L. A. Creuwels, L. M. van Golde and H. P. Haagsman, “The Pulmonary Surfactant System: Biochemical and Clinical Aspects,” Lung, Vol. 175, No. 1, 1997, pp. 1-39. doi:10.1007/PL00007554
[30] M. Sexton and J. R. Hebel, “A Clinical Trial of Change in Maternal Smoking and Its Effect on Birth Weight,” Journal of the American Medical Association, Vol. 251, No. 7, 1984, pp. 911-915. doi:10.1001/jama.1984.03340310025013
[31] E. von Mutius, “Environmental Factors Influencing the Development and Progression of Pediatric Asthma,” Journal of Allergy and Clinical Immunology, Vol. 109, No. 6, 2002, pp. S525-S532. doi:10.1067/mai.2002.124565
[32] X. Li, R. Shu, G. Filippatos and B. D. Uhal, “Apoptosis in Lung Injury and Remodeling,” Journal of Applied Physiology, Vol. 97, No. 4, 2004, pp. 1535-1542. doi:10.1152/japplphysiol.00519.2004
[33] H. I. Dieperink, T. S. Blackwell and L. S. Prince, “Hyperoxia and Apoptosis in Developing Mouse Lung Mesenchyme,” Pediatric Research, Vol. 59, No. 2, 2006, pp. 185-190. doi:10.1203/01.pdr.0000196371.85945.3a
[34] Y. J. Tan, B. C. Fielding, P. Y. Goh, S. Shen, T. H. Tan, S. G. Lim and W. Hong, “Overexpression of 7a, a Protein Specifically Encoded by the Severe Acute Respiratory Syndrome Coronavirus, Induces Apoptosis via a CaspaseDependent Pathway,” Journal of Virology, Vol. 78, No. 24, 2004, pp. 14043-14047. doi:10.1128/JVI.78.24.14043-14047.2004
[35] F. Drakopanagiotakis, A. Xifteri, V. Polychronopoulos and D. Bouros, “Apoptosis in Lung Injury and Fibrosis,” European Respiratory Journal, Vol. 32, No. 6, 2008, pp. 1631-1638. doi:10.1183/09031936.00176807
[36] S. Kumar, “Caspase Function in Programmed Cell Death,” Cell Death & Differentiation, Vol. 14, No. 1, 2007, pp. 32-43. doi:10.1038/sj.cdd.4402060
[37] R. Ganesan, P. R. Mittl, S. Jelakovic and M. G. Grutter, “Extended Substrate Recognition in Caspase-3 Revealed by High Resolution X-Ray Structure Analysis,” Journal of Molecular Biology, Vol. 359, No. 5, 2006, pp. 13781388. doi:10.1016/j.jmb.2006.04.051
[38] B. B. Wolf, M. Schuler, F. Echeverri and D. R. Green, “Caspase-3 Is the Primary Activator of Apoptotic DNA Fragmentation via DNA Fragmentation Factor-45/Inhibitor of Caspase-Activated DNase Inactivation,” The Journal of Biological Chemistry, Vol. 274, No. 43, 1999, pp. 30651-30656. doi:10.1074/jbc.274.43.30651

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.