Dynamic Performance of Fuel Cell Power Module for Mobility Applications

Abstract

Fuel cell powered vehicles have been developed as another alternative to internal combustion engine powered vehicles for some applications including passenger cars, buses, trains, motorcycles, forklifts, electric wheelchairs, electric trolleybuses, medical carts, military engines, personal sports craft, mobility devices and other self propelled equipment. Up to now, many researches have focused on the development of the power module in the Fuel cell vehicles (FCVs) and the components of these systems such as membranes, bipolar plates, and electrodes. However, our work in this study focuses on operating the integrated fuel cell power module system efficiently for various operating conditions such as pressure, relative humidity and operating modes. In our validation we have utilized PEMFC single cell, with active area geometry 16 cm2 and of 120 cm2. Some results obtained in our study shown significant performance indicators for PEMFC stack (composed of 2 cells and 4 cells in a series) at different humidification levels.

Share and Cite:

B. Mahmah, G. Morsli, M. Belacel, H. Benmoussa, S. Achachera, A. Benhamou and M. Belhamel, "Dynamic Performance of Fuel Cell Power Module for Mobility Applications," Engineering, Vol. 5 No. 2, 2013, pp. 219-229. doi: 10.4236/eng.2013.52032.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Y. Wang, K. S. Chen, J. Mishler, S. C. Cho and X. C. Adroher, “A Review of Polymer Electrolyte Membrane Fuel Cells: Technology, Applications, and Needs on Fundamental Research,” Applied Energy, Vol. 88, No. 4, 2011, pp. 981-1007. doi:10.1016/j.apenergy.2010.09.030
[2] C. Wang and M. H. Nehrir, “Load Transient Mitigation for Stand-alone Fuel Cell Systems,” IEEE Transactions on Energy Conversion, Vol. 22, No. 4, 2007, pp. 887-897.
[3] W. R Grove, “On a Gaseous Voltaic Battery,” Philosophical Magazine and Journal of Science, Vol. 21, No. 140, 1842, pp. 417-420.
[4] M. L. Perry and T. F. Fuller, “A Historical Perspective of Fuel Cell Technology in the 20th Century,” Journal of the Electrochemical Society, Vol. 149, No. 7, 2002, pp. S59S67. doi:10.1149/1.1488651
[5] S. M. J. Zaidi, “Research Trends in Polymer Electrolyte Membranes for PEMFC,” In: S. M. Javaid Zaidi and T. Matsuura, Eds., Polymer Membranes for Fuel Cells, Springer Science + Business Media, LLC., New York, 2009, pp. 7-25. doi:10.1007/978-0-387-73532-0
[6] B. Egger, P. H. Dietrich, A. Dorda and A Pesaran, “Worldwide Promotion and Deployment of Fuel Cell Vehicles,” 24th International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium (EVS24), Vol. 3, Stavanger, 13-16 May 2009, pp. 1864-1868.
[7] J. Matthey, “Catalyst Preparation for the 21st Century: Controlled Catalyst Synthesis to Match form to Function,” Platinum Metals Review, Vol. 54, No. 3, 2010, pp. 162-165. doi:10.1595/147106710X509621
[8] S. Srinivasan, E. A. Ticianelli, C. R. Derouin and A. Redondo, “Advances in Solid Polymer Electrolyte Fuel Cell Technology with Low Platinum Loading Electrodes,” Journal of Power Sources, Vol. 22, No. 3-4, 1988, pp. 359-315. doi:10.1016/0378-7753(88)80030-2
[9] L. Carrette, K. A. Friedrich and U. Stimming, “Fuel Cells: Fundamentals and Applications,” Fuel Cells, Vol. 1, No. 1, 2001, pp. 5-39. doi:10.1002/1615-6854(200105)1:1<5::AID-FUCE5>3.0.CO;2-G
[10] J. P. Meyers and H. L. Maynard, “Design Considerations for Miniaturized PEM Fuel Cells,” Journal of Power Sources, Vol. 109, No. 1, 2002, pp. 76-88. doi:10.1016/S0378-7753(02)00066-6
[11] J. Larminie and A. Dicks, “Fuel Cell Systems Explained,” 2nd Edition, John Wiley & Sons Ltd., Chichester, 2003.
[12] T. Yamafuku, K. Totsuka, S. Hitomi, H. Yasuda and M. Yamachi, “Optimization of Polymer Electrolyte Distribution of Ultra-Low Platinum Loading Electrode for PEFC,” Technical Report, Vol. 63, No. 1, 2004, pp. 23-37.
[13] A. L. Dicks, “The Role of Carbon in Fuel Cells,” Journal of Power Sources, Vol. 156, No. 1, 2006, pp. 128-141. doi:10.1016/j.jpowsour.2006.02.054
[14] F. Finsterwalder (DaimlerChrysler AG), “Degradation of the Active Catalyst Surface in Automotive Fuel Cells,” Proceedings of the 212th Electrochemical Society Meeting, Vol. 1-3, Washington DC, October 7-12, 2007, p. 400.
[15] K. S. Dhathathreyan and N. Rajalakshmi, “Polymer Electrolyte Membrane Fuel Cell,” In: S. Basu, Ed., Recent Trends in Fuel Cell Science and Technology, Anamaya Publishers, New Delhi, 2007, pp. 40-115. doi:10.1007/978-0-387-68815-2_3
[16] P. Lu and B. Ding, “Applications of Electrospun Fibers,” Recent Patents on Nanotechnology, Vol. 2, No. 3, 2008, pp. 169-182. doi:10.2174/187221008786369688
[17] L.C. Colmenares, A. Wurth, Z. Jusys and R. J. Behm, “Model Study on the Stability of Carbon Support Materials under Polymer Electrolyte Fuel Cell Cathode Operation Conditions,” Journal of Power Sources, Vol. 190, No. 1, 2009, pp. 14-24. doi:10.1016/j.jpowsour.2009.01.078
[18] Y. S. Li, T. S. Zhao and Z. X. Liang, “Effect of Polymer Binders in Anode Catalyst Layer on Performance of Alkaline Direct Ethanol Fuel Cells,” Journal of Power Sources, Vol. 190, No. 2, 2009, pp. 223-229. doi:10.1016/j.jpowsour.2009.01.055
[19] F. C. Nart and W. Vielstich, “Normalization of Porous Active Surfaces,” In: W. Vielstich, H. A. Gasteiger, A. Lamm and H. Yokokawa, Eds., Handbook of Fuel Cells— Fundamentals, Technology and Applications, Vol. 2, John Wiley & Sons Ltd., Chichester, 2009, pp. 302-315.
[20] E. A. Ticianelli and E. R. Gonzalez, “Fundamental Kinetics/Transport Processes in MEAs,” In: W. Vielstich, H. A. Gasteiger and A. Lamm, Eds., Handbook of Fuel Cells—Fundamentals, Technology and Applications, Vol. 2, John Wiley & Sons Ltd., Chichester, 2003, pp. 490501.
[21] M. ünlü, J. Zhou and P. A. Kohl, “Study of Alkaline Electrodes for Hybrid Polymer Electrolyte Fuel Cells,” Journal of the Electrochemical Society, Vol. 157, No. 10, 2010, pp. B1391-B1396. doi:10.1149/1.3468700
[22] V. T. T. Ho, B.-J. Hwang and J.-F. Lee, “New Catalyst Support Improves Efficiency and Durability of Fuel Cells,” NSRRC Activity Report, National Synchrotron Radiation Research Center, Taiwan, 2011, pp. 44-45.
[23] E. Zakrisson, “The Effect of Start/Stop Strategy on PEM Fuel Cell Degradation Characteristics. Master of Science,” Master of Science Thesis, Chalmers University of Technology, Gothenburg, 2011.
[24] J. W. Elam, N. P. Dasgupta and F. B. Prinz, “ALD for Clean Energy Conversion, Utilization, and Storage,” Materials Research Society MRS Bulletin, Vol. 36, No. 11, 2011, pp. 899-906. doi:10.1557/mrs.2011.265
[25] The Benchmarking and Best Practices Center of Excellence (B2PCOE), “Manufacturing Fuel Cell—Manhattan Project,” ACI Technologies Inc., Philadelphia, 2012, 283 Pages.
[26] D. Spernjak, J. D Fairweather, T. Rockward, K. C. Rau, J. S. Spendelow, R. L. Borup, R. Mukundan and D. Hussey, “Influence of in Situ and ex Situ Aging of Gas Diffusion Layers on Fuel Cell Performance Degradation,” Conference: ECS Meeting, Honolulu, 7-10 October 2012, pp. 16721678.
[27] K. Nishimura, J. Imahashi, M. Komachiya and K. Takahashi, “Method of Stopping a Solid Polymer Type Fuel Cell System,” Patent No. US 8173313, 2012.
[28] O. Ellabban, J. Van Mierlo, P. Lataire and P. Van den Bossche, “Z-Source Inverter for Vehicular Applications,” Vehicle Power and Propulsion Conference (VPPC), Chicago, 6-9 September 2011, pp. 1-6.
[29] United Nations Economic Commission for Europe, “Informal Documents for the 53rd GRB Session,” 15-17 February 2011. http://www.unece.org/trans/main/wp29/wp29wgs/wp29grb/grbinf53.html
[30] G. Brusaglino, “Energy and Operation Performance of Hydrogen (H2) Fuelled Vehicles,” 16 September 2009. http://www.unece.org/fileadmin/DAM/trans/doc/2009/wp29grpe/H2SGE-04-IP-02e.pdf
[31] Industry Standards & Regulations, Retrieved 30 August 2012. http://www.ihs.com/products/industry-standards/org/sae/j-series/page18.aspx
[32] P. Thounthong, S. Ra?l and B. Davat, “Test of a PEM Fuel Cell with Low Voltage Static Converter,” Journal of Power Sources, Vol. 153, No. 1, 2006, pp. 145-150. doi:10.1016/j.jpowsour.2005.01.025
[33] J. Ryu, Y. Park and M. Sunwoo, “Electric Power Train Modeling of a Fuel Cell Hybrid Electric Vehicle and Development of a Power Distribution Algorithm Based on Driving Mode Recognition,” Journal of Power Sources, Vol. 195, No. 17, 2010, pp. 5735-5748. doi:10.1016/j.jpowsour.2010.03.081
[34] N. Romani, “Modélisation et Commande du Système d’Alimentation en Air pour le Module de Puissance d’un Véhicule à Pile à Combustible avec Reformeur Embarqué,” Thèse de Doctorat en Physique, Faculté des Sciences d’Orsay, Université Paris-Sud, Orsay, 2007.
[35] D. Haddad, H. Benmoussa, N. Bourmada, K. Oulmi, B. Mahmah and M. Belhamel, “One Dimensional Transient Numerical Study of the Mass Heat and Charge Transfer in a Proton Exchange Membrane for PEMFC,” International Journal of Hydrogen Energy, Vol. 34, No. 11, 2009, pp. 5010-5014. doi:10.1016/j.ijhydene.2008.12.033
[36] B. Mahmah, A. M’Raoui, M. Belhamel and H. Benmoussa, “Experimental Study and Modelling of a Fuel Cell PEMFC Fed Directly with Hydrogen/Oxygen,” The 16th World Hydrogen Energy Conference (WHEC 16), Lyon, 13-16 June 2006, 10 Pages.
[37] F. Amrouche, B. Mahmah, M. Belhamel and H. Benmoussa, “Modélisation d’une Pile à Combustible PEMFC Alimentée Directement en Hydrogène-Oxygène et Validation Expérimentale,”Revue des Energies Renouvelables, Vol. 8, No. 2, 2005, pp. 109-121.
[38] B. Mahmah, A. M’Raoui, M. Belhamel and H. Benmoussa, “Simulation Numérique Unidimensionnelle du Phénomène de Transfert de Chaleur et de Transport de Masse et Charge dans une PEMFC,”Revue des Energies Renouvelables, Special Issue, 2003, pp. 103-110.
[39] M. W. Fowler, R. F. Mann, J. C. Amphlett, B. A. Peppley and P. R. Roberge, “Incorporation of Voltage Degradation into a Generalized Steady State Electrochemical Model for a PEM Fuel Cell,” Journal of Power Sources, Vol. 106, No. 1-2, 2002, pp. 274-283. doi:10.1016/S0378-7753(01)01029-1
[40] J. C. Amphlett, R. M. Baumert, R. F. Mann, B. A. Peppley and P. R. Roberge, “A Performance Model for PEM Fuel Cells,” Proceedings of the 28th Intersociety Energy Conversion Engineering Conference (IECEC-93), Vol. 1, Atlanta, 8-13 August 1993, pp. 1215-1220.
[41] J. C. Amphlett, R. M. Baumert, R. F. Mann, B. A. Peppley, P. R. Roberge and A. Rodrigues, “Parametric Modelling of the Performance of a 5kW Proton-Exchange Membrane Fuel Cell Stack,” Journal of Power Sources, Vol. 49, No. 1-3, 1994, pp. 349-356. doi:10.1016/0378-7753(93)01835-6
[42] J. C. Amphlett, R. F. Mann, B. A. Peppley, P. R. Roberge and A. Rodrigues, “A Practical PEM Fuel Cell Model for Simulating Vehicle Power Sources,” Proceedings of the Tenth Annual Battery Conference on Applications and Advances, Long Beach, 10-13 January 1995, pp. 221-226.
[43] J. C. Amphlett, R. F. Mann, B. A. Peppley, P. R. Roberge and A. Rodrigues, “A Model Predicting Transient Responses of Proton Exchange Membrane Fuel Cells,” Journal of Power Sources, Vol. 61, No. 1-2, 1996, pp. 183-188. doi:10.1016/S0378-7753(96)02360-9
[44] J. C. Amphlett, E. H. de Oliveira, R. F. Mann, P. R. Roberge, A. Rodrigues and J. P. Salvador, “Dynamic Interaction of a Proton Exchange Membrane Fuel Cell and a Lead-Acid Battery,” Journal of Power Sources, Vol. 65, No. 1-2, 1997, pp. 173-178. doi:10.1016/S0378-7753(97)02472-5
[45] R. F. Mann, J. C. Amphlett, M. A. I. Hooper, H. M. Jensen, B. A. Peppley and P. R. Roberge, “Development and Application of a Generalised Steady-State Electrochemical Model for a PEM Fuel Cell,” Journal of Power Sources, Vol. 86, No. 1-2, 2000, pp. 173-180. doi:10.1016/S0378-7753(99)00484-X
[46] T. E. Springer, T. A. Zawodzinski and S. Gottesfeld, “Polymer Electrolyte Fuel Cell Model,” Journal of The Electrochemical Society, Vol. 138, No. 8, 1991, pp. 23342342. doi:10.1149/1.2085971
[47] T. E. Springer, M. S. Wilson and S. Gottesfeld, “Modeling and Experimental Diagnostics in Polymer Electrolyte Fuel Cells,” Journal of the Electrochemical Society, Vol. 140, No. 12, 1993, pp. 3513-3526. doi:10.1149/1.2221120
[48] T. A. Zawodzinski, T. E. Springer, F. Uribe and S. Gottesfeld, “Characterization of Polymer Electrolytes for Fuel-Cell Applications,” Solid State Ionics, Vol. 60, No. 1-3, 1993, pp. 199-211. doi:10.1016/0167-2738(93)90295-E
[49] J. Kawamura, N. Kuwata, K. Hattori and J. Mizusaki, “Ionic Transport in Nano-Heterogeneous Structured Materials,” Reports of the Institute of Fluid Science, Vol. 19, 2007, pp. 67-72.
[50] C. Yang, P. Costamagna, S. Srinivasan, J. Benziger and A. B. Bocarsly, “Water Uptake and Conductivity of Composite Membranes Operating at Reduced Relative Humidity,” Journal of Power Sources, Vol. 103, No. 1, 2001, pp. 1-9. doi:10.1016/S0378-7753(01)00812-6
[51] E. M. W. Tsang, Z. Zhang, A. C. C. Yang, Z. Shi, T. J. Peckham, R. Narimani, B. J. Frisken and S. Holdcroft, “Nanostructure, Morphology, and Properties of Fluorous Copolymers Bearing Ionic Grafts,” Macromolecules, Vol. 42, No. 24, 2009, pp. 9467-9480. doi:10.1021/ma901740f

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.