IJG> Vol.4 No.1A, January 2013

Update of the Chronology of Natural Signals in the Near-Surface Mean Global Temperature Record and the Southern Oscillation Index

DownloadDownload as PDF (Size:818KB) Full-Text HTML PP. 234-239   DOI: 10.4236/ijg.2013.41A020

ABSTRACT

Time series for the Southern Oscillation Index and mean global near surface temperature anomalies are compared for the 1950 to 2012 period using recently released HadCRU4 data. The method avoids a focused statistical analysis of the data, in part because the study deals with smoothed data, which means there is the danger of spurious correlations, and in part because the El Ni?o Southern Oscillation is a cyclical phenomenon of irregular period. In these situations the results of regression analysis or similar statistical evaluation can be misleading. With the potential controversy arising over a particular statistical analysis removed, the findings indicate that El Nino-Southern Oscillation exercises a major influence on mean global temperature. The results show the potential of natural forcing mechanisms to account for mean global temperature variation, although the extent of the influence is difficult to quantify from among the variability of short-term influences.

KEYWORDS


Cite this paper

C. de Freitas and J. McLean, "Update of the Chronology of Natural Signals in the Near-Surface Mean Global Temperature Record and the Southern Oscillation Index," International Journal of Geosciences, Vol. 4 No. 1A, 2013, pp. 234-239. doi: 10.4236/ijg.2013.41A020.

References

[1] R. J. Allan, “El Ni?o Southern Oscillation Influences in the Australasian Region,” Progress in Physical Geography, Vol. 12, No. 3, 1988, pp. 4-40. doi:10.1177/030913338801200301
[2] R. J. Allan, J. Lindesay and D. Parker, “El Ni?o Southern Oscillation and Climatic Variability,” CSIRO Publishing, Collingwood, 1996.
[3] K. E. Trenberth and J. M. Caron, “Estimates of Meridional Atmosphere and Ocean Heat Transports,” Journal of Climate, Vol. 14, No. 16, 2001, pp. 3433-344. doi:10.1175/1520-0442(2001)014<3433:EOMAAO>2.0.CO;2
[4] K. E. Trenberth, J. M. Caron, D. P. Stepaniak and S. Worley, “Evolution of El Ni?o-Southern Oscillation and Global Atmospheric Surface Temperatures,” Journal of Geophysical Research, Vol. 107. No. D8, 2002, pp. AAC 5-1-AAC5-17. doi:10.1029/2000JD000298
[5] N. C. Fernandez, et al., “Analysis of the ENSO Signal in Tropospheric and Stratospheric Temperatures observed by MSU, 1979-2000,” Journal of Climate, Vol. 17, No. 20, 2004, pp. 3934-3946. doi:10.1175/1520-0442(2004)017<3934:AOTESI>2.0.CO;2
[6] B. Bhaskaran and A. B. Mullan, “El Ni?o-Related Variations in the Southern Pacific Atmospheric Circulation: Model versus Observations,” Climate Dynamics, Vol. 20, No. 2-3, 2003, p. 229-239.
[7] A. H. Oort and J. J. Yienger, “Observed Interannual Variability in the Hadley Circulation and Its Connection to ENSO,” Journal of Climate, Vol. 9, No. 11, 1996, pp. 2751-2767. doi:10.1175/1520-0442(1996)009<2751:OIVITH>2.0.CO;2
[8] M. Indeje, H. M. Semazzi and L. J. Ogallo, “ENSO Signals in East African Rainfall Seasons,” International Journal of Climatology, Vol. 20, No. 1, 2000, pp. 19-46. doi:10.1002/(SICI)1097-0088(200001)20:1<19::AID-JOC449>3.0.CO;2-0
[9] S. Janicot, S. Trzaska and I. Poccard, “Summer Sahel-ENSO Teleconnections and Decadal Time Scale SST Va- riations,” Climate Dynamics, Vol. 18, No. 3-4, 2001, pp. 3003-320. doi:10.1007/s003820100172
[10] H. K. Ntale and T. Y. Gan, “East African Rainfall Anomaly Patterns in Association with El Ni?o/Southern Os- cillation,” Journal of Hydrologic Engineering, Vol. 9. No. 4, 2004, pp. 257-268. doi:10.1061/(ASCE)1084-0699(2004)9:4(257)
[11] A. Giannini, J. C. H. Chiang, M. A. Cane, Y. Kushnir and R. Seager, “The ENSO Teleconnection to the Tropical Atlantic Ocean: Contributions of the Remote and Local SSTs to Rainfall Variability in the Tropical Americas,” Journal of Climate, Vol. 14, No. 24, 2001, pp. 4530 4544. doi:10.1175/1520-0442(2001)014<4530:TETTTT>2.0.CO;2
[12] A. B. Mullan, “Effects of ENSO on New Zealand and the South Pacific,” In D. Braddock, Ed., Prospects and Needs for Climate Forecasting, The Royal Society of New Zealand, Wellington, 1996.
[13] P. J. Michaels and P. C. Knappenberger, “Natural Signals in the MSU Lower Tropospheric Temperature Record,” Geophysical Research Letters, Vol. 27. No. 18, 2000, pp. 2905-2908. doi:10.1029/2000GL011833
[14] A. H. Sobel, I. M. Held and C. S. Bretherton, “The ENSO Signal in Tropical Tropospheric Temperature,” Journal of Climate, Vol. 15, No. 18, 2002, pp. 2702-2706. doi:10.1175/1520-0442(2002)015<2702:TESITT>2.0.CO;2
[15] J. D. McLean, C. R. de Freitas and R. M. Carter, “Influence of the Southern Oscillation on Tropospheric Tem- perature,” Journal of Geophysical Research, Vol. 114, No. D14, 2009. doi:10.1029/2008JD011637
[16] T. P. Barnett, “Variations in Near-Global Sea Level Pressure,” Journal of the Atmospheric Sciences, Vol. 42, No. 5, 1985, pp. 478-501. doi:10.1175/1520-0469(1985)042<0478:VINGSL>2.0.CO;2
[17] C. F. Ropelewski and P. D. Jones, “An Extension of the Tahiti-Darwin Southern Oscillation Index,” Monthly Weather Review, Vol. 115, No. 10, 1987, pp. 2161-2165.
[18] R. J. Allan, N. Nicholls, P. D. Jones and I. J. Butterworth, “A Further Extension of the Tahiti-Darwin SOI, Early ENSO Events, and Darwin Pressure,” Journal of Climate, Vol. 4, No. 7, 1991, pp. 743-749. doi:10.1175/1520-0442(1991)004<0743:AFEOTT>2.0.CO;2
[19] Australian Government Bureau of Meteorology, “S.O.I. (Southern Oscillation Index) Archives-1876 to Present,” 29 October 2012. http://www.bom.gov.au/climate/current/soihtm1.shtml
[20] A. J. Troup, “The Southern Oscillation,” Quarterly Journal of the Royal Meteorological Society, Vol. 91, No. 390, 1965, pp. 490-506. doi:10.1002/qj.49709139009
[21] C. P. Morice, J. J. Kennedy, N. A. Rayner and P. D. Jones, “Quantifying Uncertainties in Global and Regional Temperature Change Using an Ensemble of Observational Estimates: The HadCRUT4 Dataset,” Journal of Geophysical Research: Atmospheres (1984-2012), Vol. 117, No. D8, 2012. doi:10.1029/2011JD017187
[22] A. Lacis, J. Hansen and M. Sato, “Climate Forcing by Stratospheric Aerosols,” Geophysical Research Letters, Vol. 19, No. 15, 1992, pp. 1607-1610. doi:10.1029/92GL01620
[23] M. Sato, J. E. Hansen, M. P. McCormick and J. B. Pollack, “Stratospheric Aerosol Optical Depths, 1850-1990,” Journal of Geophysical Research, Vol. 98. No. D12, 1993, pp. 22987-22994.
[24] C. F. Mass and D. A. Portman, “Major Volcanic Eruptions and Climate: A Critical Evaluation,” Journal of Climate, Vol. 2, No. 6, 1989, pp. 566-593. doi:10.1175/1520-0442(1989)002<0566:MVEACA>2.0.CO;2
[25] E. G. Dutton and J. R. Christy, “Solar Radiative Forcing at Selected Locations and Evidence for Global Lower Tropospheric Cooling Following the Eruptions of El Chichón and Pinatubo,” Geophysical Research Letters, Vol. 19, No. 23, 1992, pp. 2313-2316. doi:10.1029/92GL02495
[26] C. G. Newhall and S. Self, “The Volcanic Explosivity Index (VEI): An Estimate of Explosive Magnitude for Historical Volcanism,” Journal of Geophysical Research, Vol. 87. No. C2, 1982, pp. 1231-1238. doi:10.1029/JC087iC02p01231
[27] H. H. Lamb, “Volcanic Dust in the Atmosphere; With a Chronology and Assessment of Its Meteorological Significance,” Philosophical Transactions of the Royal Society of London, Series A, Vol. 266, No. 1178, 1970, pp. 425-533. doi:10.1098/rsta.1970.0010
[28] H. H. Lamb, “Supplementary Volcanic Dust Veil Assessments,” Climate Monitor, Vol. 6, 1977, pp. 57-67.
[29] H. H. Lamb, “Update of the Chronology of Assessment of the Volcanic Dust Veil Index,” Climate Monitor, Vol. 12, No. 1178, 1983, pp. 79-90.
[30] D. Douglass and R. S. Knox, “Climate Forcing by the Volcanic Eruption of Mount Pinatubo,” Geophysical Research Letters, Vol. 32, No. 5, 2005, L05710.
[31] E. Yulaeva and J. M. Wallace, “The Signature of ENSO in Global Temperature and Precipitation Fields Derived from the Microwave Sounding Unit,” Journal of Climate, Vol. 7. No. 11, 1994, pp. 1719-1736. doi:10.1175/1520-0442(1994)007<1719:TSOEIG>2.0.CO;2
[32] A. Kumar and M. P. Hoerling, “The Nature and Causes for the Delayed Atmospheric Response to El Ni?o,” Jour- nal of Climate, Vol. 16. No. 9, 2003, pp. 1391-1403. doi:10.1175/1520-0442-16.9.1391
[33] S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller (Eds.), “Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,” Cambridge University Press, Cambridge, 2007, p. 996.
[34] D. A. Jones and B. C. Trewin, “On the Relationship between the El Nino-Southern Oscillation and Australian Land Surface Temperature,” International Journal of Climatology, Vol. 20, No. 7, 2000, pp. 697-719. doi:10.1002/1097-0088(20000615)20:7<697::AID-JOC499>3.0.CO;2-A
[35] R. W. Spencer and W. D. Braswell, “Potential Biases in Feedback Diagnosis from Observational Data: A Simple Model Demonstration,” Journal of Climate, Vol. 21, No. 21, 2008, pp. 5624-5628. doi:10.1175/2008JCLI2253.1

comments powered by Disqus

Copyright © 2014 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.