Self-Thomson Backscattering of Ultra-Intense Laser from Thin Foil Target
Ashutosh Sharma
.
DOI: 10.4236/jemaa.2013.51007   PDF    HTML   XML   5,486 Downloads   7,374 Views  

Abstract

An electromagnetic solitary structure in attosecond regime is identified, costreaming with electron bunch. It is observed via nonlinear process of Self-Thomson backscattering of an ultra-intense laser from thin foil target. The process is termed as Self-Thomson Backscattering since the counter propagating electron sheets are generated by the drive laser itself. The radiation pressure acceleration model is considered for the interaction of a super-intense linearly polarized laser pulse with a thin foil in one-dimensional (1D) particle-in-cell (PIC) simulations.

Share and Cite:

A. Sharma, "Self-Thomson Backscattering of Ultra-Intense Laser from Thin Foil Target," Journal of Electromagnetic Analysis and Applications, Vol. 5 No. 1, 2013, pp. 43-48. doi: 10.4236/jemaa.2013.51007.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. Sultana, G. Sarri and I. Kourakis, “Electrostatic Shock Dynamics in Superthermal Plasmas,” Physics of Plasmas, Vol. 19, No. 1, 2012, Article ID: 012310. Hdoi:10.1063/1.3677265
[2] T. Taniuti and K. Nishihara, “Nonlinear Waves,” Pitman Advanced Publishing Program, Boston, 1983.
[3] K. Mima, M. S. Jovanovic, Y. Sentoku, Z.-M. Sheng, M. M. ?koric and T. Sato, “Stimulated Photon Cascade and Condensate in a Relativistic Laser-Plasma Interaction,” Physics of Plasmas, Vol. 8, No. 5, 2001, pp. 2349-2356. Hdoi:10.1063/1.1356741
[4] G. Sarri, et al., “Observation of Plasma Density Dependence of Electromagnetic Soliton Excitation by an Intense Laser Pulse,” Physics of Plasmas, Vol. 18, No. 8, 2011, Article ID: 080704. Hdoi:10.1063/1.3625261
[5] J. I. Gersten and N. Tzoar, “Propagation of Localized Electromagnetic Pulses in Plasmas,” Physical Review Letters, Vol. 35, No. 14, 1975, pp. 934-937. Hdoi:10.1103/PhysRevLett.35.934
[6] J. Borhanian, I. Kourakis and S. Sobhanian, “Electromagnetic Envelope Solitons in Magnetized Plasma,” Physics Letters A, Vol. 373, No. 40, 2009, pp. 3667-3677. Hdoi:10.1016/j.physleta.2009.08.010
[7] T. Brabec and F. Krausz, “Intense Few-Cycle Laser Fields: Frontiers of Nonlinear Optics,” Reviews of Modern Physics, Vol. 72, No. 2, 2000, pp. 545-591. Hdoi:10.1103/RevModPhys.72.545
[8] S. Kneip, et al., “Bright Spatially Coherent Synchrotron X-Rays from a Table-Top Source,” Nature Physics, Vol. 6, No. 12, 2010, pp. 980-983. Hdoi:10.1038/nphys1789
[9] W. Ackermann, et al., “Operation of a Free-Electron Laser from the Extreme Ultraviolet to the Water Window,” Nature Photonics, Vol. 1, No. 6, 2007, pp. 336-342. Hdoi:10.1038/nphoton.2007.76
[10] R. W. Lee, et al., “Finite Temperature Dense Matter Studies on Next-Generation Light Sources,” Journal of the Optical Society of America B, Vol. 20, No. 4, 2003, pp. 770-778. Hdoi:10.1364/JOSAB.20.000770
[11] R. Neutze, R. Wouts, D. van der Spoel, E. Weckert and J. Hajdu, “Potential for Biomolecular Imaging with Femtosecond X-Ray Pulses,” Nature, Vol. 406, 2000, pp. 752757. Hdoi:10.1038/35021099
[12] R. Neutze, et al., “Laser Technology: Source of Coherent Kiloelectronvolt X-Rays,” Nature, Vol. 433, 2005, p. 596. Hdoi:10.1038/433596a
[13] B. Dromey, et al., “Bright Multi-keV Harmonic Generation from Relativistically Oscillating Plasma Surfaces,” Physical Review Letters, Vol. 99, No. 8, 2007, Article ID: 085001. Hdoi:10.1103/PhysRevLett.99.085001
[14] A. Einstein, “Does the Inertia of a Body Depend on Its Energy Content?” Annals of Physics, Vol. 17, 1905, pp. 891-893.
[15] V. V. Kulagin, V. A. Cherepenin, M. S. Hur and H. Suk, “Theoretical Investigation of Controlled Generation of a Dense Attosecond Relativistic Electron Bunch from the Interaction of an Ultrashort Laser Pulse with a Nanofilm,” Physical Review Letters, Vol. 99, No. 12, 2007, Article ID: 124801. Hdoi:10.1103/PhysRevLett.99.124801
[16] A. Zhidkov, J. Koga, A. Sasaki and M. Uesaka, “Radiation Damping Effects on the Interaction of Ultraintense Laser Pulses with an Overdense Plasma,” Physical Review Letters, Vol. 88, No. 18, 2002, Article ID: 185002. Hdoi:10.1103/PhysRevLett.88.185002
[17] M. Marklund and P. K. Shukla, “Nonlinear Collective Effects in Photon-Photon and Photon-Plasma Interactions,” Physical Review Letters, Vol. 78, No. 2, 2006, pp. 591-640. Hdoi:10.1103/RevModPhys.78.591

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.