Force Field Based MM2 Molecule-Surface Binding Energies for Graphite and Graphene

Abstract

The gas phase adsorption of 118 organic molecules on graphite and graphene was studied by calculating their molecule surface binding energies, Ecal*, using molecular mechanics MM2 parameters. Due to the general lack of reported experimental binding energy values for organic molecules with graphene, E*(graphene), it was considered desirable to have a simple but effective method to estimate these values. Calculated binding energy values using a three-layer model, Ecal*(3), were compared and correlated to published experimental values for graphitic surfaces, E*(graphite). Pub-lished values of experimental binding energies for graphite, E*(graphite), were available from gas-solid chromatogram-phy in the Henry’s Law region over a range of temperature. Calculated binding energy values using a one-layer model, Ecal*(1), were compared to the three-layer Ecal*(3) values and found to consistently be 93.5% as large. This relation along with an E*(graphite) and Ecal*(3) correlation was used to develop a means to estimate molecule-graphene bind-ing energies. Using this approach we report estimated values of 118 molecule-graphene binding energy values.

Share and Cite:

J. Son and T. Rybolt, "Force Field Based MM2 Molecule-Surface Binding Energies for Graphite and Graphene," Graphene, Vol. 2 No. 1, 2013, pp. 18-34. doi: 10.4236/graphene.2013.21004.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. W. Pati, T. Enoki and C. N. Rao, “Graphene and Its Fascinating Attributes,” World Scientific, Singapore, 2011.
[2] W. Choi and J. Lee, “Graphene: Synthesis and Applica- tions,” CRC Press, Boca Raton, 2012.
[3] Royal Swedish Academy of Sciences, “Scientific Back- ground on the Nobel Prize in Physics 2010 GRAPH-ENE,” 2010.http://www.nobelprize.org/nobel_prizes/physics/laureates/2010/advancedphysicsprize2010.pdf
[4] P. T. Araujo, M. Terrones and M. S. Dresselhaus, “De- fects and Impurities in Graphene-Like Materials,” Mate- rials Today, Vol. 15, No. 3, 2012, pp. 98-109. doi:10.1016/S1369-7021(12)70045-7
[5] W. Choi, I. Lahiri, R. Seelaboyina and Y. S. Kang, “Syn- thesis of Graphene and Its Applications: A Review,” Critical Reviews in Solid State Materials Sciences, Vol. 35, No. 1, 2010, pp. 52-71. doi:10.1080/10408430903505036
[6] H. J. Yoon, D. H. Jun, J. H. Yang, Z. Zhou, S. S. Yang and M. M-C. Chen, “Carbon Dioxide Gas Sensor Using a Graphene Sheet,” Sensors and Actuators B: Chemical, Vol. 157, No. 1, 2011, pp. 310-313. doi:10.1016/j.snb.2011.03.035
[7] Y. Zou, F. Li, Z. H. Zhu, M. W. Zhao, X. G. Xu and X. Y. Su, “An ab Initio Study on Gas Sensing Properties of Graphene and Si-doped Graphene,” European Physical Journal B, Vol. 81, No. 4, 2011, pp. 475 - 479. doi:10.1140/epjb/e2011-20225-8
[8] O. Leenaerts, B. Partoens and F. M. Peeters, “Adsorption of H2O, NH3, CO, NO2, and NO on Graphene: A First- Principles Study,” Physical Review B, Vol. 77, No. 12, 2008, Article ID: 125416. doi:0.1103/PhysRevB.77.125416
[9] M. Gautam and A. H. Jayatissa, “Adsorption Kinetics of Ammonia Sensing by Graphene Films Decorated with Platinum Nanoparticles,” Journal of Applied Physics, Vol. 111, No. 9, 2012, Article ID: 094317. doi:10.1063/1.4714552
[10] Y. Ren, C. Zhu, W. Cai, H. Li, H. Ji, I. Kholmanov, Y. Wu, R. D. Piner and R. S. Ruoff, “Detection of Sulfur Dioxide Gas with Graphene Field Effect Transistor,” Ap- plied Physics Letters, Vol. 100, No. 16, 2012, Article ID: 163114. doi:10.1063/1.4704803
[11] M. G. Chung, D. H. Kim, H. M. Lee, T. Kim, J. H. Choi, D. K. Seo, J.-B. Yoo, S.-H. Hong, T. J. Kang and Y. H. Kim, “Highly Sensitive NO2 Gas Sensor Based on Ozone Treated Graphene,” Sensors and Actuators B: Chemical, Vol. 166-167, 2012, pp. 172-176. doi:10.1016/j.snb.2012.02.036
[12] S. Mao, S. Cui, G. Lu, K. Yu, Z. Wen and J. Chen, “Tun- ing Gas-Sensing Properties of Reduced Graphene Oxide Using Tin Oxide Nanocrystals,” Journal of Materials Chemistry, Vol. 22, 2012, pp. 11009-11013. doi:10.1039/c2jm30378g
[13] H. Zhang, A. Kulkarni, H. Kim, D. Woo, Y.-J. Kim, B. H. Hong, J.-B. Choi and T. Kim, “Detection of Acetone Va- por Using Graphene on Polymer Optical Fiber,” Journal of Nanoscience and Nanotechnology, Vol. 11, No. 7, 2011, pp. 5939-5943. doi:10.1166/jnn.2011.4408
[14] T. V. Cuong, V. H. Pham, J. S. Chung, E. W. Shin, D. H. Yoo, S. H. Hahn, J. S. Huh, G. H. Rue, E. J. Kim, S. H. Hur and P. A. Kohl, “Solution-Processes ZnO-Chemically Converted Graphene Gas Sensor,” Materials Letters, Vol. 64, No. 22, 2010, pp. 2479-2482. doi:10.1016/j.matlet.2010.08.027
[15] J. L. Johnson, A. Behnam, S. J. Pearton and A. Ural, “Hydrogen Sensing Using Pd-Functionalized Multi-Layer Graphene Nanoribbon Networks,” Advanced Materials, Vol. 22, No. 43, 2010, pp. 4877-4880. doi:10.1002/adma.201001798
[16] W. Wu, Z. Liu, L. A. Jauregui, Q. Yu, R. Pillai, H. Cao, J. Bao, Y. P. Chen and S.-S. Pei, “Wafer-Scale Synthesis of Graphene by Chemical Vapor Deposition and Its Appli- cation in Hydrogen Sensing,” Sensors and Actuators B: Chemical, Vol. 150, No. 1, 2010, pp. 296-300. doi:0.1016/j.snb.2010.06.070
[17] H. Song, L. Zhang, C. He, Y. Qu, Y. Tian and Y. Lv, “Graphene Sheets Decorated with SnO2 NanoParticles: In Situ Synthesis and Highly Efficient Materials for Catalu- minescence Gas Sensors,” Journal of Materials Chemis- try, Vol. 21, No. 16, 2011, pp. 5972-5977. doi:10.1039/c0jm04331a
[18] A. Shimizu and K. Fujii, “Thin Film Gas Sensor,” Japan Kokai Tokkyo Koho, 2011, JP 2011169634 A 20110901.
[19] G. Lu, S. Park, K. Yu, R. S. Ruoff, L. E. Ocola, D. Ro- senmann and J. Chen, “Toward Practical Gas Sensing with Highly Reduced Graphene Oxide: A New Signal Processing Method to Circumvent Run-to-Run and Device-to-Device Variations,” ACS Nano, Vol. 5, No. 2, 2011, pp. 1154-1164. doi:10.1021/nn102803q
[20] G. Lu, L. E. Ocola and J. Chen, “Gas Detection Using Low-Temperature Reduced Graphene Oxide Sheets,” Ap- plied Physics Letters, Vol. 94, No. 8, 2009, Article ID: 083111. doi:10.1063/1.3086896
[21] T. R. Rybolt, C. E. Wells, C. R. Sisson, C. B. Black and K. A. Ziegler, “Evaluation of Molecular Mechanics Cal- culated Binding Energies for Isolated and Monolayer Or- ganic Molecules on Graphite,” Journal of Colloid and Interface Science, Vol. 314, No. 2, 2007, pp. 434-445. doi:10.1016/j.jcis.2007.05.083
[22] T. R. Rybolt, K. A. Ziegler, H. E. Thomas, J. L. Boyd and M. E. Ridgeway, “Adsorption Energies for a Nanoporous Carbon from Gas-Solid Chromatography and Molecular Mechanics,” Journal of Colloid and Interface Science, Vol. 296, No. 1, 2006, pp. 41-50. doi:10.1016/j.jcis.2005.08.057
[23] T. R. Rybolt and R. A. Hansel, “Determining Molecule- Carbon Surface Adsorption Energies Using Molecular Mechanics and Graphene Nanostructures,” Journal of Colloid and Interface Science, Vol. 300, No. 2, 2006, pp. 805-808. doi:10.1016/j.jcis.2006.04.057
[24] T. R. Rybolt, C. E. Wells, H. E. Thomas, C. M. Goodwin, J. L. Blakely and J. D. Turner, “Binding Energies for Al- kane Molecules on a Carbon Surface from Gas-Solid Chromatography and Molecular Mechanics,” Journal of Colloid and Interface Science, Vol. 325, No. 1, 2008, pp. 282-286. doi:10.1016/j.jcis.2008.06.043
[25] T. R. Rybolt, K. T. Bivona, H. E. Thomas and C. M. O’Dell, “Comparison of Gas-Solid Chromatography and MM2 Force Field Molecular Binding Energies for Green- house Gases on a Carbonaceous Surface,” Journal of Col- loid and Interface Science, Vol. 338, No. 1, 2009, pp. 287- 292. doi:10.1016/j.jcis.2009.06.001
[26] N. L. Allinger, “Conformational Analysis. 130. MM2. A Hydrocarbon Force Field Utilizing V1 and V2 Torsional Terms,” Journal of the American Chemical Society, Vol. 99, No. 25, 1977, pp. 8127-8134. doi:10.1021/ja00467a001
[27] J. Lii and N. L. Allinger, “Molecular Mechanics. The MM3 Force Field for Hydrocarbons. 3. The van der Waals’ Potentials and Crystal Data for Aliphatic and Aro- matic Hydrocarbons,” Journal of the American Chemical Society, Vol. 111, No. 23, 1989, pp. 8576-8582. doi:10.1021/ja00205a003
[28] F. Jensen, “Introduction to Computational Chemistry,” John Wiley & Sons, Chichester, 1999.
[29] E. V. Kalashnikova, A. V. Kiselev, A. M. Makogon and K. D. Shcherbakova, “Adsorption of Molecules of Dif- ferent Structure on Graphitized Thermal Carbon Black IV. Gas Chromatographic Investigation of Adsorption of Aldehydes, Ketones and Alcohols on Hydrogen-Treated Graphitized Thermal Carbon Black,” Chromatographia, Vol. 8, No. 8, 1975, pp. 399-403. doi:10.1007/BF02269088
[30] C. Vidal-Madjar, M. F. Gonnord and G. Guiochon, “Mo- lecular Statistical Theory of Adsorption Prediction of the Thermodynamical Functions of Adsorption of Hydrocar- bons on Graphitized Thermal Carbon Black,” Journal of Colloid and Interface Science, Vol. 52, No. 1, 1975, pp. 102-119. doi:10.1016/0021-9797(75)90306-9
[31] O. G. Eisen, A. V. Kiselev, A. E. Pilt, S. A. Rang and K. D. Shcherbakova, “Gas Chromatographic Investigation of Adsorption of Normal Alkenes C6 - C10 on Graphitized Thermal Carbon Black,” Chromatographia, Vol. 4, No. 10, 1971, pp. 448-454. doi:10.1007/BF02268813
[32] A. V. Kiselev, E. B. Polotnyuk and K. D. Shcherbakova, “Gas Chromatographic Study of Adsorption of Nitrogen- Containing Organic Compounds on Graphitized Thermal Carbon Black,” Chromatographia, Vol. 14, No. 8, 1981, pp. 478-483. doi:10.1007/BF02263538
[33] S. N. Yashkin, O. B. Grior’eva and A. K. Buryak, “Ex- perimental and Molecular-Statistical Investigation of Ad- sorption of Aminoadamantanes on Graphitized Thermal Carbon Black,” Russian Chemical Bulletin, Vol. 50, No. 6, 2001, pp. 980-985. doi:10.1023/A:1011348730899
[34] S. N. Yashkin, D. A. Svetlov and A. K. Buryak, “Ther- modynamic Characteristics of Adsorption of Nitrogen- Containing Heterocycles on Graphitized Thermal Carbon Black Derived from Molecular Statistical Calculation. 1. Azines,” Russian Chemical Bulletin, Vol. 52, No. 2, 2003, pp. 344-353. doi:10.1023/A:1023446513475
[35] E. G. Bychkova, E. V. Kalashnikova, A. V. Kiselev and K. D. Shcherbakova, “Thermodynamic Characteristics of Adsorption of the Naphthalene-Type Hydrocarbons on the Graphitized Thermal Carbon Black,” Vestnik Mosk- ovskogo Universiteta, Seriya 2: Khimiya, Vol. 27, No. 4, 1986, pp. 382-385.
[36] E. V. Kalashnikova, A. V. Kiselev, R. S. Petrova, K. D. Shcherbakova and D. P. Poshkus, “Chromatographic Meas- urements and Molecular Statistical Calculations of Ther- modynamic Characteristics of Adsorption of Aromatic and Polycyclic Hydrocarbons on Graphitized Thermal Carbon Black,” Chromatographia, Vol. 12, No. 12, 1979, pp. 799-802. doi:10.1007/BF02260661
[37] E. V. Kalashnikova, A. V. Kiselev and K. D. Shcherba- kova, “Retention of Some Phenyl-Substituted and Bicy- clic Hydrocarbons on Graphitized Carbon Black,” Chro- matographia, Vol. 17, No. 10, 1983, pp. 521-525. doi:10.1007/BF02261913
[38] A. V. Kiselev, V. I. Nazarova and K. D. Shcherbakova, “Molecular Structure and Retention Behaviour of Some Polycyclic Aromatic and Perhydroaromatic Hydrocarbons on Graphitized Carbon Black,” Chromatographia, Vol. 18, No. 4, 1984, pp. 183-189. doi:10.1007/BF02276730
[39] E. V. Kalashnikova, A. V. Kiselev, K. D. Shcherbakova and S. D. Vasileva, “Retention of Diphenyls, Terphenyls, Phenylalkanes and Fluorene on Graphitized Thermal Car- bon Black,” Chromatographia, Vol.14, No. 9, 1981, pp. 510-514. doi:10.1007/BF02265630
[40] A. K. Buryak, P. B. Dallakyan and A. V. Kiselev, “De- termination of Atom-Atom Potentials of Intermolecular Interaction and Calculation of the Thermodynamic Char- acteristics of Adsorption on Graphite of Sulfur- and Chlorine-Containing Organic Compounds,” Doklady Aka- demii Nauk SSSR Physical Chemistry, Vol. 282, No. 2,1985, pp. 350-353.
[41] A. K. Buryak, A. N. Fedotov and A. V. Kiselev, “Corre- lation between the Structure of Chlorinated Biphenyls and Their Adsorption on Graphitized Thermal Carbon Black,” Vestnik Moskovskogo Universiteta, Seriya 2: Khimiya, Vol. 26, No. 6, 1985, pp. 568-571.
[42] W. Engewald, E. V. Kalashnikova, A. V. Kiselev, R. S. Petrova, K. D. Shcherbakova and A. L. Shilov, “Gas Chromatographic Investigation of the Adsorption of Po- lymethylcyclohexanes on Graphitized Thermal Carbon Black,” Journal of Chromatography A, Vol. 152, No. 2, 1978, pp. 453-466. doi:10.1016/S0021-9673(00)85082-7
[43] T. R. Rybolt and C. E. Wells, “Molecule-Surface Binding Energies from Molecular Mechanics: Nucleobases on Graphene,” In: H. E. Chan, Ed., Graphene and Graphite Materials, Nova Science Publishers, New York, 2009, pp. 95-112.
[44] C. Thierfelder, M. Witte, S. Blankenburg, E. Rauls and W. G. Schmidt, “Methane Adsorption on Graphene from First Principles Including Dispersion Interaction,” Surface Science, Vol. 605, No. 7-8, 2011, pp. 746-749. doi:10.1016/j.susc.2011.01.012
[45] O. Engkvist, P. Astrand and G. Karlstrom, “Accurate Intermolecular Potentials Obtained from Molecular Wave Functions:? Bridging the Gap between Quantum Chemis- try and Molecular Simulations,” Chemical Reviews, Vol. 100, No. 11, 2000, pp. 4087-4108. doi:10.1021/cr9900477
[46] Y. Zhao and D. G. Truhlar, “Density Functionals for Noncovalent Interaction Energies of Biological Impor- tance,” Journal of Chemical Theory and Computation, Vol. 3, No. 1, 2007, pp. 289-300. doi:10.1021/ct6002719
[47] R. Zacharia, H. Ulbricht and T. Hertel, “Interlayer Cohe- sive Energy of Graphite from Thermal Desorption of Po- lyaromatic Hydrocarbons,” Physical Review B, Vol. 69, No. 15, 2004, Article ID: 155406. doi:10.1103/PhysRevB.69.155406
[48] H. Ruuska and T. A. Pakkanen, “Ab Initio Study of Inter- layer Interaction of Graphite:? Benzene-Coronene and Co- ronene Dimer Two-layer Models,” Journal of Physical Chemistry B, Vol. 105, No. 39, 2001, pp. 9541-9547. doi:10.1021/jp011512i
[49] T. P. Tauer and C. D. Sherrill, “Beyond the Benzene Di- mer:? An Investigation of the Additivity of π-π Interac- tions,” Journal of Physical Chemistry A, Vol. 109, No. 46, 2005, pp. 10475-10478. doi:10.1021/jp0553479

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.