Health> Vol.5 No.1, January 2013

Aged rat heart: Modulation of age-related respiratory defects decreases ischemic-reflow injury

DownloadDownload as PDF (Size:140KB)  HTML    PP. 1-7  

ABSTRACT

Myocardial injury increases in the elderly heart during ischemia and reperfusion. Mitochondria, the key targets and sources of injury during ischemia and reperfusion, sustain ischemic damage to the electron transport chain that is superimposed upon age-related defects. In the adult heart, interventions to activate endogenous cytoprotective signaling systems meet in mitochondria to decrease cardiac injury. Unfortunately, these systems are largely ineffective in the aged heart. Thus, new treatment concepts are needed to reduce injury in the aged heart. Our group chose a strategy to directly treat the effector of cardiac injury in the aged heart, the mitochondria. We further utilized a novel approach to ask if the reversal of aging defects in cardiac mitochondria before ischemia could decrease ischemia-reperfusion injury in the heart. Three hours following treatment with the small molecule, nutriceutical acetylcarnitine (AcCN), oxidative phosphorylation as well as age-induced defects in electron transport chain complexes III and IV was corrected in the heart. When such hearts were then exposed to ischemia and reperfusion, cardiac injury was markedly reduced. Contraction during reperfusion improved and recovery became similar to that in adult hearts. Cardiac cell death was substantially reduced. Thus, age-related defects in electron transport are a key mechanism of the increased myocardial injury in the elderly heart during ischemia and reperfusion. Modulation of aging-induced defects in mitochondrial metabolism reduces cardiac injury from ischemia and reperfusion, and is a novel strategy to protect myocardium in the elderly patient at risk for an acute myocardial infarction.

Cite this paper

Lesnefsky, E. and Hoppel, C. (2013) Aged rat heart: Modulation of age-related respiratory defects decreases ischemic-reflow injury. Health, 5, 1-7. doi: 10.4236/health.2013.51001.

References

[1] Lesnefsky, E.J., Lundergan, C.F., Hodgson, J.M., et al. (1996) Increased left ventricular dysfunction in elderly patients despite successful thrombolysis: The GUSTO-I angiographic experience. Journal of the American College of Cardiology, 28, 331-337. doi:10.1016/0735-1097(96)00148-9
[2] Ataka, K., Chen, D., Levitsky, S., et al. (1992) Effect of aging on intracellular Ca2+, pHi, and contractility during ischemia and reperfusion. Circulation, 86, 371-376.
[3] Frolkis, V.V., Frolkis, R.A., Mkhitarian, L.S., et al. (1991) Age-dependent effects of ischemia and reperfusion on cardiac function and Ca2+ transport in myocardium. Gerontology, 37, 233-239. doi:10.1159/000213266
[4] Lesnefsky, E.J., Gallo, D.S., Ye, J., et al. (1994) Aging increases ischemia-reperfusion injury in the isolated, buffer-perfused heart. Journal of Laboratory and Clinical Medicine, 124, 843-851.
[5] Liu, L., Azhar, G., Gao, W., et al. (1998) Bcl-2 and Bax expression in adult rat hearts after coronary occlusion: Age-associated differences. American Journal of Physiology, 275, R315-322.
[6] Lucas, D.T. and Szweda, L.I. (1998) Cardiac reperfusion injury: Aging, lipid peroxidation, and mitochondrial dys-function. Proceedings of the National Academy of Sciences, 95, 510-514. doi:10.1073/pnas.95.2.510
[7] Tani, M., Suganuma, Y., Hasegawa, H., et al. (1997) Decrease in ischemic tolerance with aging in isolated perfused Fischer 344 rat hearts: Relation to increases in intracellular Na+ after ischemia. Journal of Molecular and Cellular Cardiology, 29, 3081-3089. doi:10.1006/jmcc.1997.0533
[8] Azhar, G., Gao, W., Liu, L., et al. (1999) Ischemia-reperfusion in the adult mouse heart influence of age. Experimental Gerontology, 34, 699-714. doi:10.1016/S0531-5565(99)00031-5
[9] Lesnefsky, E.J., Moghaddas, S., Tandler, B., et al. (2001) Mitochondrial dysfunction in cardiac disease: Ischemia-reperfusion, aging, and heart failure. Journal of Molecular and Cellular Cardiology, 33, 1065-1089. doi:10.1006/jmcc.2001.1378
[10] Lesnefsky, E.J., Gudz, T.I., Migita, C.T., et al. (2001) Ischemic injury to mitochondrial electron transport in the aging heart: Damage to the iron-sulfur protein subunit of electron transport complex III. Archives of Biochemistry and Biophysics, 385, 117-128. doi:10.1006/abbi.2000.2066
[11] Moghaddas, S., Hoppel, C.L. and Lesnefsky, E.J. (2003) Aging defect at the Qo site of complex III augments oxyradical production in rat heart interfibrillar mitochon-dria. Archives of Biochemistry and Biophysics, 414, 59-66. doi:10.1016/S0003-9861(03)00166-8
[12] Abete, P., Testa, G., Ferrara, N., et al. (2002) Cardiopro- tective effect of ischemic preconditioning is preserved in food-restricted senescent rats. American Journal of Physiology—Heart and Circulatory Physiology, 282, H1978-H1987.
[13] Tani, M., Honma, Y., Hasegawa, H., et al. (2001) Direct activation of mitochondrial KATP channels mimics preconditioning but protein kinase C activation is less effective in middle-aged rat hearts. Cardiovascular Research, 49, 56-68. doi:10.1016/S0008-6363(00)00240-6
[14] Ishihara, M., Sato, H., Tateishi, H., et al. (2000) Beneficial effect of prodromal angina pectoris is lost in elderly patients with acute myocardial infarction. American Heart Journal, 139, 881-888. doi:10.1016/S0002-8703(00)90021-8
[15] Lee, T.M., Su, S.F., Chou, T.F., et al. (2002) Loss of preconditioning by attenuated activation of myocardial ATP-sensitive potassium channels in elderly patients undergoing coronary angioplasty. Circulation, 105, 334-340. doi:10.1161/hc0302.102572
[16] Przyklenk, K., Maynard, M., Darling, C.E., et al. (2008) Aging mouse hearts are refractory to infarct size reduc- tion with post-conditioning. Journal of the American College of Cardiology, 51, 1393-1398. doi:10.1016/j.jacc.2007.11.070
[17] Quinlan, C.L., Costa, A.D., Costa, C.L., et al. (2008) Conditioning the heart induces formation of signalosomes that interact with mitochondria to open mitoKATP chan- nels. American Journal of Physiology—Heart and Circulatory Physiology, 295, H953-H961. doi:10.1152/ajpheart.00520.2008
[18] Juhaszova, M., Zorov, D.B., Yaniv, Y., et al. (2009) Role of glycogen synthase kinase-3beta in cardioprotection. Circulation Research, 104, 1240-1252. doi:10.1161/CIRCRESAHA.109.197996
[19] Vessey, D.A., Kelley, M., Li, L., et al. (2009) Sphingosine protects aging hearts from ischemia/reperfusion injury: Superiority to sphingosine 1-phosphate and ischemic pre- and post-conditioning. Oxidative Medicine and Cellular Longevity, 2, 146-151. doi:10.4161/oxim.2.3.8622
[20] Boengler, K., Konietzka, I., Buechert, A., et al. (2007) Loss of ischemic preconditioning’s cardioprotection in aged mouse hearts is associated with reduced gap junctional and mitochondrial levels of connexin 43. American Journal of Physiology—Heart and Circulatory Physiology, 292, H1764-H1769. doi:10.1152/ajpheart.01071.2006
[21] Schulman, D., Latchman, D.S. and Yellon, D.M. (2001) Effect of aging on the ability of preconditioning to protect rat hearts from ischemia-reperfusion injury. American Journal of Physiology—Heart and Circulatory Physiology, 281, H1630-H1636.
[22] Downey, J.M. and Cohen, M.V. (2009) Why do we still not have cardioprotective drugs? Circulation Journal, 73, 1171-1177. doi:10.1253/circj.CJ-09-0338
[23] Hausenloy, D.J., Ong, S.B. and Yellon, D.M. (2009) The mitochondrial permeability transition pore as a target for preconditioning and postconditioning. Basic Research in Cardiology, 104, 189-202. doi:10.1007/s00395-009-0010-x
[24] Vinten-Johansen, J., Zhao, Z.Q., Jiang, R., et al. (2007) Preconditioning and postconditioning: innate cardioprotection from ischemia-reperfusion injury. Journal of Applied Physiology, 103, 1441-1448. doi:10.1152/japplphysiol.00642.2007
[25] Long, P., Nguyen, Q., Thurow, C., et al. (2002) Caloric restriction restores the cardioprotective effect of preconditioning in the rat heart. Mechanisms of Ageing and Development, 123, 1411-1413. doi:10.1016/S0047-6374(02)00068-4
[26] Abete, P., Testa, G., Galizia, G., et al. (2005) Tandem action of exercise training and food restriction completely preserves ischemic preconditioning in the aging heart. Experimental Gerontology, 40, 43-50. doi:10.1016/j.exger.2004.10.005
[27] Fenton, R.A., Dickson, E.W. and Dobson Jr., J.G. (2005) Inhibition of phosphatase activity enhances preconditioning and limits cell death in the ischemic/reperfused aged rat heart. Life Sciences, 77, 3375-3388. doi:10.1016/j.lfs.2005.05.047
[28] Jahangir, A., Ozcan, C., Holmuhamedov, E.L., et al. (2001) Increased calcium vulnerability of senescent cardiac mitochondria: Protective role for a mitochondrial potassium channel opener. Mechanisms of Ageing and Development, 122, 1073-1086. doi:10.1016/S0047-6374(01)00242-1
[29] Fannin, S.W., Lesnefsky, E.J., Slabe, T.J., et al. (1999) Aging selectively decreases oxidative capacity in rat heart interfibrillar mitochondria. Archives of Biochemistry and Biophysics, 372, 399-407. doi:10.1006/abbi.1999.1508
[30] Lesnefsky, E.J., Tandler, B., Ye, J., et al. (1997) Myocardial ischemia decreases oxidative phosphorylation through cytochrome oxidase in subsarcolemmal mitochondria. American Journal of Physiology, 273, H1544-H1554.
[31] Palmer, J.W., Tandler, B. and Hoppel, C.L. (1977) Bio-chemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. Journal of Biological Chemistry, 252, 8731-8739.
[32] Lesnefsky, E.J., Gudz, T.I., Moghaddas, S., et al. (2001) Aging decreases electron transport complex III activity in heart interfibrillar mitochondria by alteration of the cyto-chrome c binding site. Journal of Molecular and Cellular Cardiology, 33, 37-47. doi:10.1006/jmcc.2000.1273
[33] Paradies, G., Ruggiero, F.M., Dinoi, P., et al. (1993) Age-dependent decrease in the cytochrome c oxidase activity and changes in phopsholiids in rat-heart mitochon-dria. Archives of Gerontology and Geriatrics, 16, 262- 272. doi:10.1016/0167-4943(93)90037-I
[34] Lemieux, H., Vazquez, E.J., Fujioka, H., et al. (2010) Decrease in mitochondrial function in rat cardiac perme- abilized fibers correlates with the aging phenotype. Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 65, 1157-1164. doi:10.1093/gerona/glq141
[35] Ljubicic, V., Menzies, K.J. and Hood, D.A. (2010) Mito-chondrial dysfunction is associated with a proapoptotic cellular environment in senescent cardiac muscle. Mecha- nisms of Ageing and Development, 131, 79-88. doi:10.1016/j.mad.2009.12.004
[36] Kypriotakis, G., Vazquez, E., Lesnefsky, E.J., et al. (2007) Oxidative phosphorylation provides a valuable tool for identifying the aging mitochondrial phenotype. 12th Congress of the International Association of Biomedical Gerontology Molecular Mechanisms and Models of Aging, Spetses Island, 20-24 May 2007, Abstratct, p. 31.
[37] Crofts, A.R., Barquera, B., Gennis, R.B., et al. (1999) Mechanism of ubiquinol oxidation by the bc(1) complex: Different domains of the quinol binding pocket and their role in the mechanism and binding of inhibitors. Biochemistry, 38, 15807-15826. doi:10.1021/bi990962m
[38] Crofts, A.R., Guergova, K.M., Huang, L., et al. (1999) Mechanism of ubiquinol oxidation by the bc(1) complex: Role of the iron sulfur protein and its mobility. Biochemistry, 38, 15791-15806. doi:10.1021/bi990961u
[39] Trumpower, B.L. (1990) The protonmotive Q cycle. Energy transduction by coupling of proton translocation to electron transfer by the cytochrome bc1 complex. Journal of Biological Chemistry, 265, 11409-11412.
[40] Trumpower, B.L. (2002) A concerted, alternating sites mechanism of ubiquinol oxidation by the dimeric cytochrome bc(1) complex. Biochimica et Biophysica Acta, 1555, 166-173. doi:10.1016/S0005-2728(02)00273-6
[41] Lesnefsky, E.J. and Hoppel, C.L. (2003) Ischemia-reperfusion injury in the aged heart: Role of mitochondria. Archives of Biochemistry and Biophysics, 420, 287-297. doi:10.1016/j.abb.2003.09.046
[42] Lee, D.W., Selamoglu, N., Lanciano, P., et al. (2011) Loss of a conserved tyrosine residue of cytochrome b induces reactive oxygen speices production by cytochrome bc1. Journal of Biological Chemistry, 286, 18139-18148. doi:10.1074/jbc.M110.214460
[43] Chen, Q., Vazquez, E.J., Moghaddas, S., et al. (2003) Production of reactive oxygen species by mitochondria: Central role of complex III. Journal of Biological Chemistry, 278, 36027-36031. doi:10.1074/jbc.M304854200
[44] Gille, L. and Nohl, H. (2001) The ubiquinol/bc1 redox couple regulates mitochondrial oxygen radical formation. Archives of Biochemistry and Biophysics, 388, 34-38. doi:10.1006/abbi.2000.2257
[45] Han, D., Antunes, F., Canali, R., et al. (2003) Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. Journal of Biological Chemistry, 278, 5557-5563. doi:10.1074/jbc.M210269200
[46] St-Pierre, J., Buckingham, J.A., Roebuck, S.J., et al. (2002) Topology of superoxide production from different sites in the mitochondrial electron transport chain. Journal of Biological Chemistry, 277, 44784-44790. doi:10.1074/jbc.M207217200
[47] Suh, J.H., Heath, S.H. and Hagen, T.M. (2003) Two sub-populations of mitochondria in the aging rat heart display heterogenous levels of oxidative stress. Free Radical Biology & Medicine, 35, 1064-1072. doi:10.1016/S0891-5849(03)00468-4
[48] Chen, Q., Moghaddas, S., Hoppel, C.L., et al. (2008) Ischemic defects in the electron transport chain increase the production of reactive oxygen species from isolated rat heart mitochondria. American Journal of Physiology— Cell Physiology, 294, C460-466. doi:10.1152/ajpcell.00211.2007
[49] Lesnefsky, E.J., Slabe, T.J., Stoll, M.S., et al. (2001) Myocardial ischemia selectively depletes cardiolipin in rabbit heart subsarcolemmal mitochondria. American Journal of Physiology, 280, H2770-H2778.
[50] Paradies, G., Petrosillo, G., Gadaleta, M.N., et al. (1999) The effect of aging and acetyl-L-carnitine on the pyruvate transport and oxidation in rat heart mitochondria. FEBS Letters, 454, 207-209. doi:10.1016/S0014-5793(99)00809-1
[51] Paradies, G., Ruggiero, F.M., Petrosillo, G., et al. (1992) The effect of aging and acetyl-L-carnitine on the acitivity of the phophate carrier and on the phospholipid composition in rat heart mitochondria. Biochimica et Biophysica Acta, 406, 136-138.
[52] Paradies, G., Ruggiero, F.M., Petrosillo, G., et al. (1994) The effect of aging and acetyl-L-carnitine on the function and on the lipid composition of rat heart mitochondria. Annals of the New York Academy of Sciences, 717, 233-243. doi:10.1111/j.1749-6632.1994.tb12093.x
[53] Paradies, G., Ruggiero, F.M., Petrosillo, G., et al. (1994) Effect of aging and acetyl-L-carnitine on the activity of cytochrome oxidase and adenine nucleotide translocase in rat heart mitochondria. FEBS Letters, 350, 213-215. doi:10.1016/0014-5793(94)00763-2
[54] Paradies, G., Ruggiero, F.M., Petrosillo, G., et al. (1996) Age-dependent impairment of mitochondrial function in rat heart tissue. Effect of pharmacological agents. Annals of the New York Academy of Sciences, 786, 252-263. doi:10.1111/j.1749-6632.1996.tb39068.x
[55] Lesnefsky, E.J., He, D., Moghaddas, S., et al. (2006) Reversal of mitochondrial defects before ischemia pro- tects the aged heart. FASEB Journal, 20, 1543-1545. doi:10.1096/fj.05-4535fje
[56] Sparagna, G.C. and Lesnefsky, E.J. (2009) Cardiolipin remodeling in the heart. Journal of Cardiovascular Pharmacology, 53, 290-301. doi:10.1097/FJC.0b013e31819b5461
[57] Moghaddas, S., Stoll, M.S., Minkler, P.E., et al. (2002) Preservation of cardiolipin content during aging in rat heart interfibrillar mitochondria. Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 57, B22-B28. doi:10.1093/gerona/57.1.B22
[58] Gadaleta, M.N., Petruzzella, V., Daddabbo, L., et al. (1994) Mitochondrial DNA transcription and translation in aged rat. Effect of acetyl-L-carnitine. Annals of the New York Academy of Sciences, 717, 150-160. doi:10.1111/j.1749-6632.1994.tb12082.x
[59] Gadaleta, M.N., Petruzzella, V., Fracasso, F., et al. (1990) Acetyl-L-carnitine increases cytochrome oxidase subunit I mRNA content in hypothyroid rat liver. FEBS Letters, 277, 191-193. doi:10.1016/0014-5793(90)80841-6
[60] Rosca, M.G., Lemieux, H. and Hoppel, C.L. (2009) Mitochondria in the elderly: Is acetylcarnitine a rejuvenator? Advanced Drug Delivery Reviews, 61, 1332-1342. doi:10.1016/j.addr.2009.06.009
[61] Ahn, B.H., Kim, H.S., Song, S., et al. (2008) A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proceedings of the National Academy of Sciences, 105, 14447-14452. doi:10.1073/pnas.0803790105
[62] Lombard, D.B., Alt, F.W., Cheng, H.L., et al. (2007) Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Molecular and Cellular Biology, 27, 8807-8814. doi:10.1128/MCB.01636-07
[63] Carrea, F.P., Lesnefsky, E.J., Repine, J.E., et al. (1991) Reduction of canine myocardial infarct size by a diffusible reactive oxygen metabolite scavenger. Efficacy of dimethylthiourea given at the onset of reperfusion. Circulation Research, 68, 1652-1659. doi:10.1161/01.RES.68.6.1652
[64] Stewart, S., Lesnefsky, E.J. and Chen, Q. (2009) Reversible blockade of electron transport with amobarbital at the onset of reperfusion attenuates cardiac injury. Translational Research, 153, 224-231.
[65] Przyklenk, K., Maynard, M., Greiner, D.L., et al. (2011) Cardioprotection with postconditioning: Loss of efficacy in murine models of type-2 and type-1 diabetes. Antio-xidants & Redox Signaling, 14, 781-790.
[66] Chen, Q., Camara, A.K., Stowe, D.F., et al. (2007) Modulation of electron transport protects cardiac mito-chondria and decreases myocardial injury during ischemia and reperfusion. American Journal of Physiology—Cell Physiology, 292, C137-C147. doi:10.1152/ajpcell.00270.2006

  
comments powered by Disqus

Copyright © 2014 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.