Efficiency of microsatellite isolation from orchids via next generation sequencing

Abstract

Microsatellites, or simple sequence repeats (SSRs), are highly polymorphic, co-dominant genetic markers commonly used for population genetics analyses although de novo development of species specific microsatellites is cost-and time-intensive. Orchidaceae is one of the most species-rich families of angiosperms with more than 30,000 species estimated. Despite its high species-diversity, microsatellites are available only for a few species and all were developed by only using Sanger sequencing methods. For the first time in orchids, we used 454 GS-FLX sequencing to isolate microsatellites in two species (Cypripedium kentuckiense and Pogonia ophioglossoides), and report preliminary results of the study. From 1/16th plate that was subjected to sequencing, 32,665 reads were generated, from which 15,473 fragments contained at least one SSR. We selected 20,697 SSRs representing di-, tri-, and tetra-nucleotides. While 3,674 microsatellites had flanking regions on both sides, useable primer pairs could be designed for 255 SSRs. The mean numbers of reads, SSRs, and SSR-containing reads useful for primer design estimated for other 15 orchid species using Sanger sequencing method were 166, 78 and 31, respectively. Results demonstrate that the efficiency of microsatellite isolation in orchids is substantially higher with 454 GS-FLX sequencing technique in comparison to the Sanger sequencing methods.

Share and Cite:

Pandey, M. and Sharma, J. (2012) Efficiency of microsatellite isolation from orchids via next generation sequencing. Open Journal of Genetics, 2, 167-172. doi: 10.4236/ojgen.2012.24022.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Chambers, G.K. and Macavoy, E.S. (2000) Microsatellites: Consensus and controversy. Comparative Biochemistry and Physiology, 126, 455-476. doi:10.1016/S0305-0491(00)00233-9
[2] Hancock, J.M. (1995) The contribution of slippage-like processes to genome evolution. Journal of Molecular Evolution, 41, 1038-1047. doi:10.1007/BF00173185
[3] Gerber, H., Seipel, K., Georgiev, O., H?fferer, M., Hug, M., Rusconi, S. and Schaffner, W. (1994) Transcriptional activation modulated by homopolymeric glutamine and proline stretches. Science, 263, 808-811. doi:10.1126/science.8303297
[4] Kashi, Y., King, D. and Soller, M. (1997) Simple sequence repeats as a source of quantitative genetic variation. Trends in Genetics, 13, 74-78. doi:10.1016/S0168-9525(97)01008-1
[5] Schl?tterer, C. and Tautz, D. (1992) Slippage synthesis of simple sequence DNA. Nucleic Acids Research, 20, 211-215. doi:10.1093/nar/20.2.211
[6] Buschiazzo, E. and Gemmell, N.J. (2006) The rise, fall and renaissance of microsatellites in eukaryotic genomes. Bioessays, 28, 1040-1050. doi:10.1002/bies.20470
[7] Selkoe, K.A. and Toonen, R.J. (2006) Microsatellites for ecologists: A practical guide to using and evaluating microsatellite markers. Ecology Letters, 9, 615-629. doi:10.1111/j.1461-0248.2006.00889.x
[8] Mittal, N. and Dubey, A. (2009) Microsatellite markers— A new practice of DNA based markers in molecular genetics. Pharmacognosy Reviews, 3, 235-246.
[9] Jones, A.G., Small, C.M., Paczolt, K.A. and Ratterman, N.L. (2010) A practical guide to methods of parentage analysis. Molecular Ecology Resources, 10, 6-30. doi:10.1111/j.1755-0998.2009.02778.x
[10] Guichoux, E., Lagache, L., Wagner, S., et al. (2011) Current trends in microsatellite genotyping. Molecular Ecology Resources, 11, 591-611. doi:10.1111/j.1755-0998.2011.03014.x
[11] Jarne, P. and Lagoda, P. (1996) Microsatellites, from molecules to populations and back. Trends in Ecology and Evolution, 11, 424-429. doi:10.1016/0169-5347(96)10049-5
[12] Zane, L., Bargelloni, L. and Patarnello, T. (2011) Strategies for microsatellite isolation: A review. Molecular Ecology, 11, 1-16. doi:10.1046/j.0962-1083.2001.01418.x
[13] Rassmann, K., Schl?tterer, C. and Tautz, D. (1991) Isolation of simple-sequence loci for use in polymerase chain reaction-based DNA fingerprinting. Electrophoresis, 12, 113-118. doi:10.1002/elps.1150120205
[14] Kijas, J.M.H., Fowler, J.C.S., Garbett, C.A. and Thomas, M.R. (1194) Enrichment of microsatellites from the Citrus genome using biotinylated oligonucleotide sequences bound to streptavidin-coated magnetic particles. Biotechniques, 16, 656-662.
[15] Kandpal, R.P., Kandpal, G. and Weissman, S.M. (1994) Construction of libraries enriched for sequence repeats and jumping clones, and hybridization selection for regions specific markers. Proceedings of National Academy of Science USA, 91, 88-92. doi:10.1073/pnas.91.1.88
[16] Fischer, D. and Bachmann, K. (1998) Microsatellite enrichment in organisms with large genomes (Allium cepa L.). Biotechniques, 24, 796-802.
[17] Pandey, M., Gailing, O., Fischer, D., Hattemer, H.H. and Finkeldey, R. (2004) Characterization of microsatellite markers in sycamore (Acer pseudoplatanus L.). Molecular Ecology Notes, 4, 253-255. doi:10.1111/j.1471-8286.2004.00633.x
[18] Hudson, M.E. (2008) Sequencing breakthroughs for genomic ecology and evolutionary biology. Molecular Ecology Notes, 8, 3-17.
[19] Morozova, O. and Marra, M.A. (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics, 92, 255-264. doi:10.1016/j.ygeno.2008.07.001
[20] Buehler, D., Graf, R., Holderegger, R. and Gugerli, F. (2011) Using the 454 pyrosequencing-based technique in the development of nuclear microsatellite loci in the alpine plant Arabis alpine (Brassicaceae). American Journal of Botany, 98, e103-e105. doi:10.3732/ajb.1000488
[21] Jennings, T.N., Knaus, B.J., Mullins, T.D., Haig, S.M. and Cronn, R.C. (2011) Multiplexed microsatellite recovery using massively parallel sequencing. Molecular Ecology Resources, 11, 1060-1067. doi:10.1111/j.1755-0998.2011.03033.x
[22] Zalapa, J.E., Cuevas, H., Zhu, H., Steffan, S., Senalik, D., Zeldin, E., McCown, B., Harbut, R. and Simon, P. (2012) Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. American Journal of Botany, 99, 193-208. doi:10.3732/ajb.1100394
[23] Swarts, N.D., Sinclair, E.A. and Dixon, K.W. (2007) Characterization of microsatellite loci in the endangered grand spider orchid Caladenia huegelii (Orchidaceae). Molecular Ecology Notes, 7, 1141-1143. doi:10.1111/j.1471-8286.2007.01810.x
[24] Xia, K., Ye, X. and Zhang, M. (2008) Isolation and characterization of nine microsatellite markers for Cymbidium sinense. Horticulture Science, 43, 1925-1926.
[25] Tang, M., Zeng, C.-X., Bi, Y.-F. and Yang, J.-B. (2012) Microsatellite markers for the Chinese endangered and endemic orchid Cymbidium tortisepalum (Orchidaceae). American Journal of Botany, 99, e11-e13. doi:10.3732/ajb.1100307
[26] Pinheiro, F., Santos, M.O., Barros, F., et al. (2008) Isolation and characterization of microsatellite loci in the Brazilian orchid Epidendrum fulgens. Conservation Genetics, 9, 1661-1663. doi:10.1007/s10592-008-9514-4
[27] Gustafson, S. and Thorén, P.A. (2001) Microsatellite loci in Gymnadenia conopsea, the fragrant orchid. Molecular Ecology Notes, 1, 81-82. doi:10.1046/j.1471-8278.2001.00033.x
[28] Campbell, V.V., Rowe, G., Beebee, T.J.C. and Hutchings, M.J. (2002) Isolation and characterization of microsatellite primers for the fragrant orchid Gymnadenia conopsea (L.) R. Brown (Orchidaceae). Conservation Genetics, 3, 209-210. doi:10.1023/A:1015224531795
[29] Lombardo, V.T., Hopkins, S.E., Selosse, M.-A., Cozzolino, S. and Taylor, D.L. (2008) Isolation and characterization of new polymorphic microsatellite loci in the mixotrophic orchid Limodorum abortivum L. Swartz (Orchidaceae). Molecular Ecology Resources, 8, 1117-1120. doi:10.1111/j.1755-0998.2008.02176.x
[30] López-Roberts, M.C., Almeida, P.R.M., Oliveira, E.J.F. and van de Berg, C. (2012) Microsatellite marker development for the threatened orchid Masdevallia solomonii (Orchidaceae). American Journal of Botany, 99, e66-e68. doi:10.3732/ajb.1100364
[31] Soliva, M., Gautschi, B., Salzmann, C., Tenzer, I. and Widmer, A. (2000) Isolation and characterization of microsatellite loci in the orchid Ophrys araneola (Orchidaceae) and a test of cross-species amplification. Molecular Ecology, 9, 2178-2179. doi:10.1046/j.1365-294X.2000.105313.x
[32] Cotrim, H.C., Monteiro, F.A., Sousa, E.S., Fay, M.F., Chase, M.W. and Pais, M.S. (2009) Isolation and characterization of novel polymorphic nuclear microsatellite markers from Ophrys fusca (Orchidaceae) and crossspecies amplification. Conservation Genetics, 9, 739-742. doi:10.1007/s10592-008-9634-x
[33] Li, L.-N., Zeng, S., Zheng, F., Chen, Z.-L., Wu, K.-L., Zhang, J.-X. and Dual, J. (2010) Isolation and characterization of 10 polymorphic microsatellite loci in Paphiopedilum concolor (Batem.) Pfitzer (Orchidaceae) and cross-species amplification. Horticulture Science, 45, 1286-1287.
[34] Rodrigues, K.F. and Kumar S.V. (2009) Isolation and characterization of 24 microsatellite loci in Paphiopedilum rothschildianum, and endangered slipper orchid. Conservation Genetics, 10, 127-130. doi:10.1007/s10592-008-9533-1
[35] Pellegrino, G.D., Cafasso, A., Widmer, M., Soliva, A., Musacchio, A. and Cozzolino, S. (2001) Isolation of microsatellite loci from the orchid Serapias vomeracea (Orchidaceae) and cross-priming to the other Serapias species. Molecular Ecology Notes, 1, 279-280. doi:10.1046/j.1471-8278.2001.00106.x
[36] Phuekvilai, P., Pradit, P. and Surin, P. (2009) Development of microsatellite markers for Vanda orchid. Kasetsart Journal of Natural Science, 43, 497-506.
[37] Bory, S., Da Silva, D., Risterucci, A.M., Grisoni, M., Besse, P. and Duval, M.F. (2008) Development of microsatellite markers in cultivated Vanilla: Polymorphism and transferability to other Vanilla species. Scientia Horticulturae, 115, 420-425. doi:10.1016/j.scienta.2007.10.020
[38] Huang, X. and Madan, A. (1999) CAP3: A DNA sequence assembly program. Genome Research, 9, 868-877. doi:10.1101/gr.9.9.868
[39] Faircloth, B. (2008) Msatcommander: Detection of microsatellite repeat arrays and automated, locus-specific primer design. Molecular Ecology Resources, 8, 92-94. doi:10.1111/j.1471-8286.2007.01884.x
[40] Rozen, S. and Skaletsky, H.J. (2000) Primer3 on the WWW for general users and for biologist programmers. Methods in Molecular Biology, 132, 365-386.
[41] Toth, G., Gaspari, Z. and Jurka, J. (2000) Microsatellites in different eukaryotic genomes: Survey and analysis. Genome Research, 10, 967-981. doi:10.1101/gr.10.7.967
[42] Pan, L., Xia, Q., Quan, Z., Liu, H., Ke, W. and Ding, Y. (2010) Development of novel EST-SSRs from sacred lotus (Nelumbo nucifera Gaertn) and their utilization for the genetic diversity analysis of N. nucifera. Journal of Heredity, 101, 71-82. doi:10.1093/jhered/esp070
[43] Lagercrantz, U., Ellegren, H. and Andersson, L. (1993) The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates. Nucleic Acid Research, 21, 1111-1115. doi:10.1093/nar/21.5.1111
[44] Goldstein, D.B. and Clark, A.G. (1995) Microsatellite variation in North American populations of Drosophila melanogaster. Nucleic Acid Research, 23, 3882-3886. doi:10.1093/nar/23.19.3882
[45] Bachtrog, D., Agis, M., Imhof, M. and Schloetterer, C. (2000) Microsatellite variability differs between dinucleotide repeat motifs-evidence from Drosophila melanogaster. Molecular Biology and Evolution, 170, 1277-1285. doi:10.1093/oxfordjournals.molbev.a026411
[46] Xu, Z., Gutierrez, L., Hitchens, M., Scherer, S., Sater, A.K., et al. (2008) Distribution of polymorphic and nonpolymorphic microsatellite repeats in Xenopus tropicalis. Bioinformatics and Biology Insights, 2, 157-169.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.