Detection of Small Wetlands with Multi Sensor Data in East Africa

Abstract

The dynamic nature and inaccessibility of wetland ecosystems restricts in situ data collection and promote the use of various remote sensing platforms. This is because of their ability to record large areas in comparatively short time periods and map physically unreachable areas. Sensors in the optical and microwave range of the electromagnetic spectrum play a critical role in wetlands detection and delineation, as they complement each other in data collection. This study examined the potential of optical and microwave remote sensing in detecting the diversity of small wetlands (<500 ha) in the semi-arid and sub humid parts of Laikipia and Pangani plains and the humid parts of Mt. Kenya and Usambara highlands in Kenya and Tanzania, respectively. An intensive field survey was conducted to supplement the remotely sensed data. Decision tree, supervised and unsupervised classification techniques, facilitated the detection of floodplains and inland valley wetlands within the study sites. The results reveal that although optical and microwave data work effectively in the detection of wetlands the latter would be more effective in larger wetlands than those in the scope of this study.

 

Share and Cite:

E. Mwita, G. Menz, S. Misana and P. Nienkemper, "Detection of Small Wetlands with Multi Sensor Data in East Africa," Advances in Remote Sensing, Vol. 1 No. 3, 2012, pp. 64-73. doi: 10.4236/ars.2012.13007.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] P. Murphy, J. Ogilvie, K. Connor and P. Arp, “Mapping Wetlands: A Comparison of Two Different Approaches for New Brunswick, Canada,” Wetlands, Vol. 27, No. 4, 2007, pp. 846-854. doi:10.1672/0277-5212(2007)27[846:MWACOT]2.0.CO;2
[2] B. W. Heumann, “Satellite Remote Sensing of Mangrove Forests: Recent Advances and Future Opportunities,” Progress in Physical Geography, Vol. 35, No. 1, 2011, pp. 87-108. doi:10.1177/0309133310385371
[3] S. L. Ozesmi and M. E. Bauer, “Satellite Remote Sensing of Wetlands,” Wetlands Ecology and Management, Vol. 10, No. 5, 2002, pp. 381-402. doi:10.1023/A:1020908432489
[4] B. Haack, “Monitoring Wetland Changes with Remote Sensing: An East African Example,” Environmental Management, Vol. 20, No. 3, 1996, pp. 411-419. doi:10.1007/BF01203848
[5] E. W. Ramsey Ⅲ and S. C. Laine, “Comparison of Landsat Thematic Mapper and High Resolution Photography to Identify Change in Complex Coastal Wetlands,” Journal of Coastal Research, Vol. 13, No. 2, 1997, pp. 281- 292.
[6] K. Kindscher, A. Fraser, M. E. Jakubauskas and D. M. Debinski, “Identifying Wetland Meadows in Grand Teton National Park Using Remote Sensing and Average Wetland Values,” Wetlands Ecology and Management, Vol. 5, No. 4, 1997, pp. 265-273. doi:10.1023/A:1008265324575
[7] N. C. Davidson and C. M. Finlayson, “Earth Observation for Wetland Inventory, Assessment and Monitoring,” Aquatic Conservation: Marine and Freshwater Ecosytems, Vol. 17, No. 3, 2007, pp. 219-228. doi:10.1002/aqc.846
[8] P. M. Mather, “Computer Processing of Remotely-Sensed Images: An Introduction,” John Wiley & Sons Ltd., Hoboken, 1987.
[9] M. Gluck, R. Rempel and P. Uhlig, “An Evaluation of Remote Sensing for Regional Wetland Mapping Applications,” Ontario Forest Research Institute, Peterborough, 1996.
[10] N. Baghdadi, M. Bernier, R. Gauthier and I. Neeson, “Evaluation of C-Band SAR-Data for Wetlands Mapping,” International Journal of Remote Sensing, Vol. 22, No. 1, 2001, pp. 71-88. doi:10.1080/014311601750038857
[11] S. P. S. Kushwaha, R. S. Dwivedi and B. R. M. Rao, “Evaluation of Various Digital Image Processing Techniques for Detection of Coastal Wetlands Using ERS-1 SAR-Data,” International Journal of Remote Sensing, Vol. 21, No. 3, 2000, pp. 565-579.
[12] F. M. Henderson and A. J. Lewis, “Radar Detection of Wetland Ecosystems: A Review,” International Journal of Remote Sensing, Vol. 29, No. 20, 2008, pp. 5809-5835. doi:10.1080/01431160801958405
[13] T. M. Lillesand, R. W. Kiefer and J. W. Chipman, “Remote Sensing and Image Interpretation,” 6th Edition, Wiley and Sons, Hoboken, 2008.
[14] J. Franke, M. Becker, G. Menz, S. Misana, E. Mwita and P. Nienkemper, “Aerial Imagery for Monitoring Land Use in East African Wetland Ecosystems,” IEEE International Geoscience and Remote Sensing Symposium 2009, Cape Town, 12-17 July 2009, pp. V288-V291.
[15] N. Sakané, M. Alvarez, M. Becker, B. B?hme, C. Handa, H. Kamiri, M. Langensiepen, G. Menz, S. Misana, N. Mogha, B. M?seler, E. Mwita, H. Oyieke and M. van Wijk, “Classification, Characterisation and Use of Small Wetlands in East Africa,” Wetlands, Vol. 31, No .6, 2011, pp. 1103-1116.
[16] M. Islam, P. S. Thenkabail, R. W. Kulawardhana, R. Alankara, S. Gunasinghe, C. Edussriya and A. Gunawardana, “Semi-Automated Methods for Mapping Wetlands Using Landsat ETM+ and SRTM Data,” International Journal of Remote Sensing, Vol. 29, No. 24, 2008, pp. 7077-7106. doi:10.1080/01431160802235878
[17] P. C. Dubois, J. Van Zyl and E. T. Engman, “Measuring Soil Moisture with Imaging Radars,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 33, No. 4, 1995, pp. 915- 926.
[18] J. Li and W. Chen, “A Rule-Based Method for Mapping Canada’s Wetlands Using Optical, Radar and DEM Data,” International Journal of Remote Sensing, Vol. 26, No. 22, 2005, pp. 5051-5069. doi:10.1080/01431160500166516
[19] R. W. Kulawardhana, P. S. Thenkabail, et al., “Evaluation of the Wetland Mapping Methods Using Landsat ETM and SRTM Data,” Journal of Spatial Hydrology, Vol. 7, No. 2, 2007, pp. 62-96.
[20] N. van de Giesen, M. Owe, K. Brubaker, J. Ritchie and A. Rango, “Characterization of West African Shallow Flood Plains with L-and C-Band Radar,” Remote Sensing and Hydrology 2000, Santa Fe, 2-7 April 2000, pp. 365-367.
[21] J. Whitcomb, M. Moghaddam, K. McDonald, J. Kellndofer and E. Podest, “Mapping Vegetated Wetlands of Alaska Using L-Band Radar Sattelite Imagery,” Canadian Journal of Remote Sensing, Vol. 35, No. 1, 2009, pp. 54-72. doi:10.5589/m08-080
[22] K. C. Slatton, M. M. Crawford, J. C. Gibeaut and R. Gutierrez, “Modeling Wetland Vegetation Using Polarimetric SAR,” International Geoscience and Remote Sensing Symposium, 1996, Lincoln, 27-31 May 1996, pp. 263-265.
[23] Y. Yamagata and Y. Yasuoka, “Classification of Wetland Vegetation by Texture Analysis Methods Using ERS-1 and JERS-1 Images,” International Geoscience and Remote Sensing Symposium, 1993, Tokyo, 18-21 August 1993, pp. 1614-1616.
[24] J. H. Everitt, C. Yang, R. S. Fletcher, M. R. Davis and D. L. Drawe, “Using Aerial Color-Infrared Photography and QuickBird Satellite Imagery for Mapping Wetland Vegetation,” Geocarto International, Vol. 19, No. 4, 2004, pp. 15-22. doi:10.1080/10106040408542323
[25] J. G. Lyon, “Wetland Landscape Characterization,” CRC Press, Boca Raton, 2001.
[26] W. R. Niedzwiedz and S. S. Batie, “An Assessment of Urban Development into Coastal Wetlands Using Historical Aerial Photography: A Case Study,” Environmental Management, Vol. 8, No. 1984, pp. 205-213. doi:10.1007/BF01866962
[27] E. R. De Roeck, N. E. C. Verhoest, M. H. Miya, H. Lievens, O. Batelaan, A. Thomas and L. Brendonck, “Remote Sensing and Wetland Ecology: A South African Case Study,” Sensors, Vol. 8, No. 5, 2008, pp. 3542-3556. doi:10.3390/s8053542

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.