Isolation and Identification of Arbuscular Mycorrhizal Fungi from Agricultural Fields of Vietnam

Abstract

The rising claim for more environmental friendly and healthy agriculture is a strong incentive to find alternative strategies to replace the use of mineral fertilizer and pesticide. Arbuscular mycorrhizal fungi (AMF), a main component of soil microbiota, represent a promising tool as providers of key ecological services. The present work represented one of the first attempts to study, under a morphological and molecular point of view, the AMF communities associated to some strategic crops in Vietnam. The findings about the AMF morphotypes dominant in different crop systems could be a starting point for the development of well performing and adapted inocula suitable for the application in field.

Share and Cite:

Z. Sasvári, F. Magurno, D. Galanics, T. Hang, T. Ha, N. Luyen, L. Huong and K. Posta, "Isolation and Identification of Arbuscular Mycorrhizal Fungi from Agricultural Fields of Vietnam," American Journal of Plant Sciences, Vol. 3 No. 12A, 2012, pp. 1796-1801. doi: 10.4236/ajps.2012.312A220.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] F. C. Stintzing and R. Carle, “Functional Properties of Anthocyanins and Betalains in Plants, Food, and in Human Nutrition,” Trends in Food Science & Technology, Vol. 15, No. 1, 2004, pp. 19-38. doi:10.1016/j.tifs.2003.07.004
[2] P. Jeffries, S. Gianinazzi, S. Perotto, K. Turnau and J. M. Barea, “The Contribution of Arbuscular Mycorrhizal Fungi in Sustainable Maintenance of Plant Health and Soil Fertility,” Biology and Fertility of Soils, Vol. 37, No. 1, 2003, pp. 1-16.
[3] A. H. Fitter, “Darkness Visible: Reflections on Underground Ecology,” Journal of Ecology, Vol. 93, 2055, pp. 231-243.
[4] S. E. Smith and D. J. Read, “Mycorrhizal Symbiosis,” 3rd Edition, Academic Press, London, 2008.
[5] R. D. Finlay, “Ecological Aspects of Mycorrhizal Symbiosis: With Special Emphasis on the Functional Diversity of Interactions Involving the Extraradical Mycelium,” Journal of Experimental Botany, Vol. 59, No. 5, 2008, pp. 1115-1126. doi:10.1093/jxb/ern059
[6] B. Bago, P. E. Pfeffer, J. Abubaker, J. Jun, J. W. Allen, J. Brouillette, D. D. Douds, P. J. Lammers, Y. B. Shachar-Hill, et al., “Carbon Export from Arbuscular Mycorrhizal Roots Involves the Translocation of Carbohydrate as Well as Lipid,” Plant Physiology, Vol. 131, No. 3, 2003, pp. 1496-1507. doi:10.1104/pp.102.007765
[7] M. Baslam, I. Garmendia and N. Goicoechea, “Arbuscular Mycorrhizal Fungi (AMF) Improved Growth and Nutritional Quality of Greenhouse-Grown Lettuce,” Journal of Agricultural and Food Chemistry, Vol. 59, No. 10, 2011, pp. 5504-5515. doi:10.1021/jf200501c
[8] B. A. Sikes, C. Cottenie and J. N. Klironomos, “Plant and Fungal Identity Determines Pathogen Protection of Plant Roots by Arbuscular Mycorrhizas,” Journal of Ecology, Vol. 97, No. 6, 2009, pp. 1274-1280. doi:10.1111/j.1365-2745.2009.01557.x
[9] M. Miransari, “Contribution of Arbuscular Mycorrhizal Symbiosis to Plant Growth under Different Types of Soil Stress,” Plant Biology, Vol. 12, 2010, pp. 563-569.
[10] N. P. Seeram, “Berry fruits: Compositional Elements, Biochemical Activities, and the Impact of Their Intake on Human Health, Performance, and Disease,” Journal of Agricultural and Food Chemistry, Vol. 56, No. 3, 2008, pp. 627-629. doi:10.1021/jf071988k
[11] J. Albrechtova, A. Latr, L. Nedorost, R. Pokluda, K. Posta and M. Vosatka, “Dual Inoculation with Mycorrhizal and Saprotrophic Fungi Applicable in Sustainable Cultivation Improves the Yield and Nutritive Value of Onion,” The Scientific World Journal, 2012, Article ID 374091.
[12] S. Gianinazzi and M. Vosatka, “Inoculum of Arbuscular mycorrhizal Fungi for Production Systems, Science Meets Business,” Canadian Journal of Botany, Vol. 82, No. 8, 2004, pp. 1264-1271. doi:10.1139/b04-072
[13] I. Hernádi, Z. Sasvári, J. Albrechtová, M. Vosátka and K. Posta, “Arbuscular Mycorrhizal Inoculants Increase Yield of Spice Pepper and Affects Indigenous Fungal Community in the Field,” HortScience, Vol. 47, No. 5, 2012, pp. 603-606.
[14] M. W. Schwartz, J. D. Hoeksema, C. A. Gehring, N. C. Johnson, J. N. Klironomos, L. K. Abbott and A. Pringle, “The Promise and the Potential Consequences of the Global Transport of Mycorrhizal Fungal Inoculum,” Ecology Letters, Vol. 9, 2006, pp. 501-515. doi:10.1111/j.1461-0248.2006.00910.x
[15] J. W. Gerdemann and T. H. Nicolson, “Spores of Mycorrhizal Endogone Species Extracted from Soil by Wet Sieving and Decanting,” Transactions of the British Mycological Society, Vol. 46, No. 2, 1963, pp. 235-244. doi:10.1016/S0007-1536(63)80079-0
[16] D. C. Ianson and M. F. Allen, “The Effects of Soil Texture on Extraction of Vesicular-Arbuscular Mycorrhizal Fungal Spores from Arid Sites,” Mycologia, Vol. 78, No. 2, 1986, pp. 164-168. doi:10.2307/3793161
[17] T. J. White, T. Bruns, S. Lee and J. Taylor, “Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes For Phylogenetics,” In: M. A. Innis, D. H. Gelfand, J. J. Sninsky and T. J. White, Eds., PCR Protocols: A Guide to Methods and Application, Academic, San Diego, 1990, pp. 315-322.
[18] J. Lee, S. Lee and J.P. Young, “Improved PCR Primers for the Detection and Identification of Arbuscular mycorrhizal Fungi,” FEMS Microbiology Ecology, Vol. 65, No. 2, 2008, pp. 339-349. doi:10.1111/j.1574-6941.2008.00531.x
[19] K. Tamura, J. Dudley, M. Nei and S. Kumar, “MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0.,” Molecular Biology and Evolution, Vol. 24, 2007, pp. 1596-1599. doi:10.1093/molbev/msm092
[20] F. Oehl, E. Sieverding, K. Ineichen, P. Mader, T. Boller and A. Wiemken, “Impact of Land Use Intensity on the Species Diversity of Arbuscular Mycorrhizal Fungi in Agroecosystems of Central Europe,” Applied and Environmental Microbiology, Vol. 69, No. 5, 2003, pp. 2816-2824. doi:10.1128/AEM.69.5.2816-2824.2003
[21] W. Wangiyana, P. S. Cornish and E. C. Morris, “Arbuscular Mycorrhizal Fungi Dynamics in Contrasting Cropping Systems on Vertisol and Regosol Soils of Lombok, Indonesia,” Experimental Agriculture, Vol. 42, No. 4, 2006, pp. 427-439. doi:10.1017/S0014479706003826
[22] E. Lumini, M. Vallino, M. M. Alguacil, M. Romani and V. Bianciotto, “Different Farming and Water Regimes in Italian Rice Fields Affect Arbuscular mycorrhizal Fungal Soil Communities,” Ecological Applications, Vol. 21, No. 5, 2011, pp. 1696-1707. doi:10.1890/10-1542.1
[23] W. K. Cornwell, B. L. Bedford and C.T. Chapin, “Occurrence of Arbuscular mycorrhizal Fungi in a Phosphorus-Poor Wetland and Mycorrhizal Response to Phosphorus Fertilization,” American Journal of Botany, Vol. 88, No. 10, 2001, pp. 1824-1829. doi:10.2307/3558359
[24] A. Brown and C. Bledsoe, “Spatial and Temporal Dynamics of Mycorrhizas in Jaumea Carnosa, a Tidal Saltmarsh Holophyte,” Journal of Ecology, Vol. 84, 1996, pp. 703-715. doi:10.2307/2261333
[25] S. P. Miller and J. D. Bever, “Distribution of Arbuscular mycorrhizal Fungi in Stands of the Wetland Grass Panicum hemitomon along a Wide Hydrologic Gradient,” Oecologia, Vol. 119, 1999, pp. 586-592. doi:10.1007/s004420050823
[26] M. M. Alguacil, E. Lumini, A. Roldán, J. R. Salinas-García, P. Bonfante and V. Bianciotto, “The Impact of Tillage Practices on Arbuscular Mycorrhizal Fungal Diversity in Subtropical Crops,” Ecological Applications, Vol. 18, No. 2, 2008, pp. 527-536. doi:10.1890/07-0521.1

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.