Measurements of Plasma Electron Temperature Utilizing Magnesium Lines Appeared in Laser Produced Aluminum Plasma in Air

Abstract

We have utilized the relative intensity of magnesium lines originated from the Mg I at 285.2 nm and Mg II at 280.27, 279.55 nm to measure the plasma electron temperature. The plasma was produced via interaction of Nd:YAG laser with solid aluminum target contains traces of magnesium. The magnesium lines were found to suffer from optical thickness which manifests itself on the form of scattered points around the Saha-Boltzmann line. We have utilized a simple method used for rapid calculation to the amount of absorption to these lines via comparison of the electron densities as deduced from magnesium lines to that evaluated from the optically thin hydrogen Hα line at 656.27 nm appeared in the same spectra under the same condition. A correction to the magnesium spectral lines intensities was carried out; hence the corrected temperatures were re-evaluated. The measurements were repeated at different delay times ranging from 1 to 5 μsec. This work emphasizes on the importance of correcting the emitted spectral line intensity against the effect of self absorption before using them in the calculation of plasma electron temperature in laser induced breakdown spectroscopy (LIBS) experiments.

Share and Cite:

A. Sherbini, A. Aamer, A. Hassan and T. Sherbini, "Measurements of Plasma Electron Temperature Utilizing Magnesium Lines Appeared in Laser Produced Aluminum Plasma in Air," Optics and Photonics Journal, Vol. 2 No. 4, 2012, pp. 278-285. doi: 10.4236/opj.2012.24034.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. Klein, J. Hildenhagen, K. Dickmann, T. Stratoudaki and Zafiropulos “LIBS-Spectroscopy for Monitoring and Control of the Laser Cleaning Process of Stone and Medieval Glass,” Journal of Cultural Heritage, Vol. 1, Suppl. 1, 2000, pp.287-292. doi:10.1016/S1296-2074(00)00173-4
[2] O. Samek, D. C. S. Beddows, H. H. Telle, J. Kaiser, M. L?ska, J. O. Cáceres, and A. G. Ure?a “Quantitative Laser-Induced Breakdown Spectroscopy Analysis of Calcified Tissue Samples,” Spectrochimica Acta Part B, Vol. 56, No. 6, 2001, pp. 865-875 doi:10.1016/S0584-8547(01)00198-7
[3] Z. M. Madhavi, N. Labbé, G. R. Timothy and D. W. Stan “Analysis of Preservative-Treated Wood by Multivariate Analysis of Laser-Induced Breakdown Spectroscopy Spectra,” Spectrochimica Acta Part B, Vol. 60, No. 7-8, 2005, pp.1179-1185. doi:10.1016/j.sab.2005.05.022
[4] N. Carmon, M. Oujj, E. Rebollar, H. R?mich and M. Castillejo “Analysis of Corroded Glasses by Laser Induced Breakdown Spectroscopy,” Spectrochimica Acta Part B, Vol. 60, No. 12, 2005, pp.1155-1162. doi:10.1016/j.sab.2005.05.016
[5] L. St-Onge, E. Kwong, M. Sabsabi and E. B. Vadas, “Rapid Analysis of Liquid Formulations Containing Sodium Chloride Using Laser-Induced Breakdown Spectroscopy,” Journal of Pharmaceutical and Biomedical Analysis, Vol. 36, No. 2, 2004, pp. 277-284. doi:10.1016/j.jpba.2004.06.004
[6] L. Barrette and S. Turmel “On-Line Iron-Ore Slurry Monitoring for real-Time Process Control of pellet Making Processes Using Laser-Induced Breakdown Spectroscopy: Graphitic vs. Total Carbon Detection,” Spectrochimica Acta Part B, Vol. 56, No. 6, 2001, pp. 715-723. doi:10.1016/S0584-8547(01)00227-0
[7] L. E. Garcya-Ayuso, J. Amador-Hernández, J. M. Fernández-Romero and M. D. L. de Castro, “Characterization of Jewellery Products by Laser-Induced Breakdown Spectroscopy,” Analytica Chimica Acta, Vol. 457, No. 2, 2002, pp. 247-256. doi:10.1016/S0003-2670(02)00054-5
[8] A. Jurado-López and M. D Luque de Castro, “Laser-Induced Breakdown Spectrometry in Jewellery Industry, Part II: Quantitative Characterization of Gold-Filled Interface,” Talanta, Vol. 59, No. 2, 2003, pp. 409-415. doi:10.1016/S0039-9140(02)00527-1
[9] F. Capitelli, F. Colao, M. R. Provenzano, R. Fantoni, G. Brunetti and N. Senesi, “Determination of Heavy Metals in Soils by Laser Induced Breakdown Spectroscopy,” Geoderma, Vol. 106, No. 1-2, 2002, pp. 45-62. doi:10.1016/S0016-7061(01)00115-X
[10] I. B. Gornushkin, A. Ya. Kazakov, N. Omenetto, B. W. Smith and J. D. Winefordner, “Experimental Verification of a Radiative Model of Laser-Induced Plasma Expanding into Vacuum,” Spectrochimica Acta Part B, Vol. 60, No. 2, 2005, pp. 215-230. doi:10.1016/j.sab.2004.11.009
[11] H. R. Griem, “Plasma Spectroscopy,” McGraw-Hill, Boston, 1964.
[12] A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti and E. Tognoni, “Evaluation of Self-Absorption Coefficients of Aluminum Emission Lines in Laser-Induced Breakdown Spectroscopy Measurements,” Spectrochimica Acta Part B, Vol. 60. No. 12, 2005, pp. 15731579. doi:10.1016/j.sab.2005.10.011
[13] D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti and E. Tognoni, “A Procedure for Correcting Self-Absorption in Calibration Free-Laser Induced Breakdown Spectroscopy,” Spectrochimica Acta Part B, Vol. 57, No. 22, 2002, pp. 339-353. doi:10.1016/S0584-8547(01)00398-6
[14] M. J. Ying, Y. y. Xia, Y. M. Sun, M. W. Zhao and X. D. Liu, “Ambient Gas Effects on High-Power Nd:YAG Laser Ablation of SnO2:Sb Transparent Conducting Thin Film,” Optics and Lasers in Engineering, Vol. 41, No. 3, 2004, pp. 537-544. doi:10.1016/S0143-8166(03)00025-3
[15] H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto and M. Ripert “Correction of the Self-Absorption for Reversed Spectral Lines: Application to Two Resonance Lines of Neutral Aluminum,” Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 77, No. 4, 2003, pp. 365-372.
[16] H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto and P. Matheron, “Correction of Self-Absorption Spectral Line and Ratios of Transition Probabilities for Homogeneous and LTE Plasma,” Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 75, No. 6, 2002, pp. 747-763.
[17] E. Alexandre, F. Belkacem, A. Lesage and J. Richou “A Single Laser Spark in Aqueous Medium,” Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 64, No. 4, 2000, pp. 353-361.
[18] S. Bukvic, A. Sreckovic and S. Djenize, “Mg II h and k Lines Stark Parameters,” New Astronomy, Vol. 9, No. 8, 2004, pp. 629-633. doi:10.1016/j.newast.2004.04.002
[19] W. Lochte-Holtgreven, “Plasma Diagnostics,” North Holland, 1968.
[20] A. M. El Sherbini, H. Hegazy and Th. M. El Sherbini, “Measurement of Electron Density Utilizing the Hα-Line from Laser Produced Plasma in Air,” Spectrochimica Acta Part B, Vol. 61, No. 5, 2006, pp. 532-539. doi:10.1016/j.sab.2006.03.014
[21] D. Vincent, H. Rene, M. Sabsabi and L. St-Onge, “An Evaluation of a Commercial Echelle Spectrometer with Intensified Charge-Coupled Device Detector for Materials Analysis by Laser-Induced Plasma Spectroscopy,” Spectrochimica Acta Part B, Vol. 56, No. 6, 2001, pp. 1011-1025. doi:10.1016/S0584-8547(01)00174-4
[22] F. Bredice, F. O. Borges, H. Sobral, H. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti and E. Tognoni, “Evaluation of Self-Absorption of Manganese Emission Lines in Laser-Induced Breakdown Spectroscopy Measurements,” Spectrochimica Acta Part B, Vol. 61, No. 12, 2006, pp. 1294-1303. doi:10.1016/j.sab.2006.10.015
[23] N. Konjevic, A. Lesage, J. R. Fuhr and W. L. Wiese, “Experimental Stark Widths for Spectral Lines of Neutral and Ionized Atoms (A Critical Review of Selected Data For the Period 1989 through 2000),” Journal of Physical and Chemical Reference Data, Vol. 31, No. 3, 2002, pp. 819-927. doi:10.1063/1.1486456
[24] N. Konjevic, “Plasma Broadening and Shifting of Non-Hydrogenic Spectral Lines: Present Status and Applications,” Physics Reports, Vol. 316, No. 6, 1999, pp. 339-401. doi:10.1016/S0370-1573(98)00132-X
[25] H. R. Griem, “Spectral Line Broadening by Plasmas,” Academic Press, New York, 1974.
[26] A. M. EL Sherbini, A. M. Aboulfotouh, S. H. Allam and Th. M. EL Sherbini, “Diode Laser Absorption Measurements at the Hα-Transition in Laser Induced Plasmas on Different Targets,” Spectrochimica Acta Part B, Vol. 65, No. 12, 2010, pp. 1041-1046. doi:10.1016/j.sab.2010.11.004
[27] C. Aragón and J. A. Aguilera, “Characterization of Laser Induced Plasmas by Optical Emission Spectroscopy: A Review of Experiments and Methods,” Spectrochimica Acta Part B, Vol. 63, No. 9, 2008, pp. 893-916. doi:10.1016/j.sab.2008.05.010

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.