ABB> Vol.3 No.8, December 2012

Detection of human papillomavirus L1 gene DNA fragments in postmortem blood and spleen after Gardasil® vaccination—A case report

DownloadDownload as PDF (Size:996KB)  HTML    PP. 1214-1224  
Author(s)    Leave a comment

ABSTRACT

A same-nested PCR was used to re-amplify the amplicon of a hypervariable region of the HPV-16 L1 gene DNA in the postmortem blood and splenic tissue obtained at autopsy of a formerly healthy teenage girl who suffered a sudden unexpected death in sleep 6 months after 3 intramuscular injections of a quadrivalent HPV vaccine, Gardasil?. A full autopsy analysis revealed no cause of death. The HPV-16 gene DNA detected in the postmortem materials was similar to the HPV-16 gene DNA fragments in Gardasil? in that both were in non-B-conformation, requiring nondegenerate GP6 and MY11 primers to re-amplify the PCR amplicon for detection and to generate a template useful for direct DNA sequencing. A sequence excised from the base-calling DNA sequencing electropherogram was analyzed by Basic Local Alignment Search Tool (BLAST) alignment and a 45 - 60 base sequence fully matched with a standard hypervariable region of the HPV-16 L1 gene retrieved from the National Center for Biotechnology Information database validated the correct genotyping for HPV- 16 L1 gene DNA. These naked non-proliferating HPV- 16 L1 gene DNA fragments appeared to be in the macrophages of the postmortem blood and spleen, and were protected from degradation by binding firmly to the particulate aluminum adjuvant used in vaccine formulation. The significance of these HPV DNA fragments of a vaccine origin found in post-mortem materials is not clear and warrants further investigation.

Cite this paper

Lee, S. (2012) Detection of human papillomavirus L1 gene DNA fragments in postmortem blood and spleen after Gardasil® vaccination—A case report. Advances in Bioscience and Biotechnology, 3, 1214-1224. doi: 10.4236/abb.2012.38148.

References

[1] Mach, H., Volkin, D.B., Troutman, R.D., Wang, B., Luo, Z., Jansen, K.U. and Shi, L. (2006) Disassembly and reassembly of yeast-derived recombinant human papillomavirus virus-like particles (HPV VLPs). Journal of Pharmaceutical Sciences, 95, 2195-2206. doi:10.1002/jps.20696
[2] Bryan, J.T. (2007) Developing an HPV vaccine to prevent cervical cancer and genital warts. Vaccine, 25, 3001- 3006. doi:10.1016/j.vaccine.2007.01.013
[3] The Future II Study Group (2007) Quadrivalent vaccine against human papillomavirus to prevent high-grade cervical lesions. The New England Journal of Medicine, 356, 1915-1927. doi:10.1056/NEJMoa061741
[4] Merck & Co., Inc. (2006) Gardasil?[Quadrivalent Human Papillomavirus Types 6, 11, 16, 18 Recombinant Vaccine]. Merck Product Document 9883616. http://www.merck.com/product/usa/pi_circulars/g/gardasil/gardasil_pi.pdf
[5] Einstein, M.H., Baron, M., Levin, M.J., Chatterjee, A., Edwards, R.P., Zepp, F., Carletti, I., Dessy, F.J., Trofa, A.F., Schuind, A., Dubin, G. and HPV-010 Study Group (2009) Comparison of the immunogenicity and safety of Cervarix and Gardasil human papillomavirus (HPV) cervical cancer vaccines in healthy women aged 18 - 45 years. Human Vaccines, 5, 705-719. doi:10.4161/hv.5.10.9518
[6] Giuliano, A.R., Lazcano-Ponce, E., Villa, L., Nolan, T., Marchant, C., Radley, D., Golm, G., McCarroll, K., Yu, J., Esser, M.T., Vuocolo, S.C. and Barr, E. (2007) Impact of baseline covariates on the immunogenicity of a quadrivalent (types 6, 11, 16, and 18) human papillomavirus virus-like-particle vaccine. Journal of Infectious Diseases, 196, 1153-1162. doi:10.1086/521679
[7] Villa, L.L., Ault, K.A., Giuliano, A.R., Costa, R.L., Petta, C.A., Andrade, R.P., Brown, D.R., Ferenczy, A., Harper, D.M., Koutsky, L.A., Kurman, R.J., Lehtinen, M., Malm, C., Olsson, S.E., Ronnett, B.M., Skjeldestad, F.E., Steinwall, M., Stoler, M.H., Wheeler, C.M., Taddeo, F.J., Yu, J., Lupinacci, L., Railkar, R., Marchese, R., Esser, M.T., Bryan, J., Jansen, K.U., Sings, H.L., Tamms, G.M., Saah, A.J. and Barr, E. (2006) Immunologic responses following administration of a vaccine targeting human papilloma
[8] US Food and Drug Administration. (2011) FDA information on gardasil-presence of DNA fragments expected, no safety risk. http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm276859.htm
[9] Lee, S.H. (2012) Detection of human papillomavirus (HPV) L1 gene DNA possibly bound to particulate aluminum adjuvant in the HPV vaccine Gardasil?. Journal of Inorganic Biochemistry, 117, 85-92. doi:10.1016/j.jinorgbio.2012.08.015
[10] Kwissa, M., Lindblad, E.B., Schirmbeck, R. and Reimann, J. (2003) Codelivery of a DNA vaccine and a protein vaccine with aluminum phosphate stimulates a potent and multivalent immune response. Journal of Molecular Medicine, 81, 502-510. doi:10.1007/s00109-003-0452-9
[11] Brotherton, J.M., Gold, M.S., Kemp, A.S., McIntyre, P.B., Burgess, M.A., Campbell-Lloyd, S. and New South Wales Health HPV Adverse Events Panel (2008) Anaphylaxis following quadrivalent human papillomavirus vaccination. Canadian Medical Association Journal, 179, 525-533. doi:10.1503/cmaj.080916
[12] Sutton, I., Lahoria, R., Tan, I., Clouston, P. and Barnett, M. (2009) CNS demyelination and quadrivalent HPV vaccination. Multiple Sclerosis Journal, 15, 116-119. doi:10.1177/1352458508096868
[13] Wildemann, B., Jarius, S., Hartmann, M., Regula, J.U. and Hametner, C. (2009) Acute disseminated encephalomyelitis following vaccination against human papilloma virus. Neurology, 72, 2132-2133. doi:10.1212/WNL.0b013e3181aa53bb
[14] Mendoza Plasencia, Z., González López, M., Fernández Sanfiel, M.L. and Mu?iz Montes, J.R. (2010) Acute disseminated encephalomyelitis with tumefactive lesions after vaccination against human papillomavirus. Neurologia, 25, 58-59. doi:10.1016/S0213-4853(10)70023-2
[15] Chang, J., Campagnolo, D., Vollmer, T.L. and Bomprezzi, R. (2011) Demyelinating disease and polyvalent human papilloma virus vaccination. Journal of Neurology, Neurosurgery, and Psychiatry, 82, 1296-1298. doi:10.1136/jnnp.2010.214924
[16] DiMario Jr., F.J., Hajjar, M. and Ciesielski, T. (2010) A 16-year-old girl with bilateral visual loss and left hemiparesis following an immunization against human papilloma virus. Journal of Child Neurology, 25, 321-327. doi:10.1177/0883073809349322
[17] Balamoutsos G, Bouktsi M, Paschalidou M, Tascos, N. and Milonas, I. (2009) A report of five cases of CNS demyelination after quadrivalent human papilloma virus vaccination: Could there be any relationship? www.guthyjacksonfoundation.org/services/download.php?2297.pdf+374
[18] Rossi, M., Bettini, C. and Pagano, C. (2011) Bilateral papilledema following human papillomavirus vaccination. Journal of Medical Cases, 2, 222-224.
[19] Slade, B.A., Leidel, L., Vellozzi, C., Woo, E.J., Hua, W., Sutherland, A., Izurieta, H.S., Ball, R., Miller, N., Braun, M.M., Markowitz, L.E. and Iskander, J. (2009) Postlicensure safety surveillance for quadrivalent human papillomavirus recombinant vaccine. The Journal of the American Medical Association, 302, 750-757. doi:10.1001/jama.2009.1201
[20] Lee, S.H., Vigliotti, V.S., Vigliotti, J.S. and Pappu, S. (2007) Routine human papillomavirus genotyping by DNA sequencing in community hospital laboratories. Infectious Agents and Cancer, 2, 11. doi:10.1186/1750-9378-2-11
[21] Lee, S.H., Vigliotti, V.S. and Pappu, S. (2009) Human papillomavirus (HPV) infection among women in a representative rural and suburban population of the United States. International Journal of Gynecology & Obstetrics, 105, 210-214. doi:10.1016/j.ijgo.2009.01.019
[22] Lee, S.H., Vigliotti, V.S. and Pappu, S. (2009) Molecular tests for human papillomavirus (HPV), Chlamydia trachomatis and Neisseria gonorrhoeae in liquid-based cytology specimen. BMC Women’s Health, 9, 8. doi:10.1186/1472-6874-9-8
[23] Lee, S.H., Vigliotti, V.S., Vigliotti, J.S. and Pappu, S. (2009) Validation of human papillomavirus genotyping by signature DNA sequence analysis. BMC Clinical Pathology, 9, 3. doi:10.1186/1472-6890-9-3
[24] Lee, S.H., Vigliotti, V.S. and Pappu, S. (2010) Signature sequence validation of human papillomavirus type 16 (HPV-16) in clinical specimens. Journal of Clinical Pathology, 63, 235-239. doi:10.1136/jcp.2009.069401
[25] Lee, S.H. (2012) Guidelines for the use of molecular tests for the detection and genotyping of human papilloma virus from clinical specimens. Methods in Molecular Biology, 903, 65-101. doi:10.1007/978-1-61779-937-2_5
[26] Lee, S.H. (2013) Topological conformational changes of human papillomavirus (HPV) DNA bound to an insoluble aluminum salt—A study by low temperature PCR. Advances in Biological Chemistry, in press.
[27] Karlik, S.J., Eichhorn, G.L., Lewis, P.N. and Crapper, D.R. (1980) Interaction of aluminum species with deoxyribonucleic acid. Biochemistry, 19, 5991-5998. doi:10.1021/bi00567a008
[28] Schubbert, R., Renz, D., Schmitz, B. and Doerfler, W. (1997) Foreign (M13) DNA ingested by mice reaches peripheral leukocytes, spleen, and liver via the intestinal wall mucosa and can be covalently linked to mouse DNA. Proceedings of the National Academy of Sciences of the United States, 94, 961-966. doi:10.1073/pnas.94.3.961
[29] Shimada, T., Yamaguchi, N., Nishida, N., Yamasaki, K., Miura, K., Katamine, S. and Masuzaki, H. (2010) Human papillomavirus DNA in plasma of patients with HPV16 DNA-positive uterine cervical cancer. Japanese Journal of Clinical Oncology, 40, 420-424. doi:10.1093/jjco/hyp193
[30] Bodaghi, S., Wood, L.V., Roby, G., Ryder, C., Steinberg, S.M. and Zheng, Z.M. (2005) Could human papillomaviruses be spread through blood? Journal of Clinical Microbiology, 43, 5428-5434. doi:10.1128/JCM.43.11.5428-5434.2005
[31] Marichal, T., Ohata, K., Bedoret, D., Mesnil, C., Sabatel, C., Kobiyama, K., Lekeux, P., Coban, C., Akira, S., Ishii, K.J., Bureau, F. and Desmet, C.J. (2011) DNA released from dying host cells mediates aluminum adjuvant activiity. Nature Medicine, 17, 996-991. doi:10.1038/nm.2403
[32] Gherardi, R.K., Coquet, M., Cherin, P., Belec, L., Moretto, P., Dreyfus, P.A., Pellissier, J.F., Chariot, P. and Authier FJ. (2001) Macrophagic myofasciitis lesions assess long-term persistence of vaccine-derived aluminium hydroxide in muscle. Brain, 124, 1821-1831. doi:10.1093/brain/124.9.1821
[33] Exley, C., Swarbrick, L., Gherardi, R.K. and Authier, F.J. (2009) A role for the body burden of aluminium in vaccine-associated macrophagic myofasciitis and chronic fatigue syndrome. Medical Hypotheses, 72, 135-139. doi:10.1016/j.mehy.2008.09.040
[34] Gherardi, R.K. and Authier, F.J. (2012) Macrophagic myofasciitis: Characterization and pathophysiology. Lupus, 21, 184-189. doi:10.1177/0961203311429557
[35] Caulfield, M.J., Shi, L., Wang, S., Wang, B., Tobery, T.W., Mach, H., Ahl, P.L., Cannon, J.L., Cook, J.C., Heinrichs, J.H. and Sitrin, R.D. (2007) Effect of alternative aluminum adjuvants on the absorption and immunogenicity of HPV16 L1 VLPs in mice. Human Vaccines, 3, 139-145. doi:10.4161/hv.3.4.4309
[36] Würtele, H., Little, K.C. and Chartrand, P. (2003) Illegitimate DNA integration in mammalian cells. Gene Therapy, 10, 1791-1799. doi:10.1038/sj.gt.3302074
[37] Milot, E., Belmaaza, A., Wallenburg, J.C., Gusew, N., Bradley, W.E. and Chartrand, P. (1992) Chromosomal illegitimate recombination in mammalian cells is associated with intrinsically bent DNA elements. European Molecular Biology Organization Journal, 11, 5063-5070.
[38] Doerfler, W., Schubbert, R., Heller, H., K?mmer, C., Hilger-Eversheim, K., Knoblauch, M. and Remus, R. (1997) Integration of foreign DNA and its consequences in mammalian systems. Trends in Biotechnology, 15, 297- 301. doi:10.1016/S0167-7799(97)01061-5
[39] Bergen, J.M., Park, I.K., Horner, P.J. and Pun, S.H. (2008) Nonviral approaches for neuronal delivery of nucleic acids. Pharmaceutical Research, 25, 983-998. doi:10.1007/s11095-007-9439-5
[40] Lechardeur, D., Verkman, A.S. and Lukacs, G.L. (2005) Intracellular routing of plasmid DNA during non-viral gene transfer. Advanced Drug Delivery Reviews, 57, 755-767. doi:10.1016/j.addr.2004.12.008
[41] Sparwasser, T., Miethke, T., Lipford, G., Erdmann, A., H?cker, H., Heeg, K. and Wagner, H. (1997) Macrophages sense pathogens via DNA motifs: induction of tumor necrosis factor-alpha-mediated shock. European Journal of Immunology, 27, 1671-1679. doi:10.1002/eji.1830270712
[42] H?cker, H., Mischak, H., Miethke, T., Liptay, S., Schmid, R., Sparwasser, T., Heeg, K., Lipford, G.B., Wagner, H. (1998) CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. European Molecular Biology Organization Journal, 17, 6230- 6240.
[43] H?cker, G., Redecke, V. and H?cker, H. (2002) Activation of the immune system by bacterial CpG-DNA. Immunology, 105, 245-251.
[44] Yoshida, H., Nishikawa, M., Yasuda, S., Mizuno, Y. and Takakura, Y. (2008) Cellular activation by plasmid DNA in various macrophages in primary culture. Journal of Pharmaceutical Sciences, 97, 4575-4585. doi:10.1002/jps.21302
[45] Boccaccio, G.L., Mor, F. and Steinman, L. (1999) Noncoding plasmid DNA induces IFN-gamma in vivo and suppresses autoimmune encephalomyelitis. International Immunology, 11, 289-296. doi:10.1093/intimm/11.2.289
[46] Fukuhara, Y., Naoi, T., Ogawa, Y., Nishikawa, M. and Takakura, Y. (2007) Plasmid DNA uptake and subsequent cellular activation characteristics in human monocyte-derived cells in primary culture. Journal of Pharmaceutical Sciences, 96, 1576-1584. doi:10.1002/jps.20816
[47] Parrillo, J.E., Burch, C., Shelhamer, J.H., Parker, M.M., Natanson, C. and Schuette, W. (1985) A circulating myocardial depressant substance in humans with septic shock. Septic shock patients with a reduced ejection fraction have a circulating factor that depresses in vitro myocardial cell performance. Journal of Clinical Investigation, 76, 1539-1553. doi:10.1172/JCI112135
[48] Kumar, A., Paladugu, B., Mensing, J., Kumar, A. and Parrillo, J.E. (2007) Nitric oxide-dependent and independent mechanisms are involved in TNF-alpha induced depression of cardiac myocyte contractility. American Journal of Physiology—Regulatory, Integrative, and Comparative Physiology, 292, R1900-R1906. doi:10.1152/ajpregu.00146.2006
[49] Cauwels, A., Van Molle, W., Janssen, B., Everaerdt, B., Huang, P., Fiers, W. and Brouckaert, P. (2000) Protection against TNF-induced lethal shock by soluble guanylate cyclase inhibition requires functional inducible nitric oxide synthase. Immunity, 13, 223-231. doi:10.1016/S1074-7613(00)00022-4
[50] Cauwels, A. and Brouckaert, P. (2007) Survival of TNF toxicity: Dependence on caspases and NO. Archives of Biochemistry and Biophysics, 462, 132-139. doi:10.1016/j.abb.2007.01.021
[51] Cauwels, A., Janssen, B., Waeytens, A., Cuvelier, C. and Brouckaert, P. (2003) Caspase inhibition causes hyperacute tumor necrosis factor-induced shock via oxidative stress and phospholipase A2. Nature Immunology, 4, 387-493. doi:10.1038/ni914
[52] Weinberg, J.R., Wright, D.J. and Guz, A. (1988) Interleukin-1 and tumour necrosis factor cause hypotension in the conscious rabbit. Clinical science (London), 75, 251- 255.
[53] Turner, C.R., Esser, K.M., Wheeldon, E.B., Slivjak, M. and Smith, E.F. III (1989) Cardiovascular and pulmonary effects of human recombinant tumor necrosis factor in the conscious rat. Circulatory Shock, 28, 369-384.
[54] Chapman, P.B., Lester, T.J., Casper, E.S., Gabrilove, J.L., Wong, G.Y., Kempin, S.J., Gold, P.J., Welt, S., Warren, R.S., Starnes, H.F., Sherwin, S.A., Old, L.J. and Oettgen, H.F. (1987) Clinical pharmacology of recombinant human tumor necrosis factor in patients with advanced cancer. Journal of Clinical Oncology, 5, 1942-1951.
[55] Brouckaert, P., Ameloot, P., Cauwels, A., Everaerdt, B., Libert, C., Takahashi, N., Van Molle, W. and Fiers, W. (1994) Receptor-selective mutants of tumour necrosis factor in the therapy of cancer: Preclinical studies. Circulatory Shock, 43, 185-190.

comments powered by Disqus

Copyright © 2014 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.